首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of anionic-cationic surfactant solutions and the antimicrobial properties of novel N,N-dimethyl-N-[3-(gluconamide/lactobionamide)]propyl-N-alkylammonium bromides (CnDGPB and CnDLPB), N-methyl-N-hydroxyethyl group-N-[3-(gluconamide)-propyl]-N-alkylammonium bromide (CnMHGPB) and star-shaped gluconamide-type cationic surfactants N-dodecyl-N,N-bis[(3-d-gluconylamido)propyl]-N-alkylammonium bromide (CnDBGB) were investigated. Mixed stability in combination with sodium n-alkylbenzenesulfonate (LAS) was determined via transmittance; stability is achieved when percent transmittance was greater than 90 %. Transmittance results suggest that these cationic surfactants can form stable solutions with anionic surfactants over a broad concentration range. The inhibition activity of C n DBGB is the best among the three kinds of glucocationic surfactants. Antimicrobial activity of C12 surfactants was the best, C14 was the second and C10 was the worst. Moreover, antibacterial activity of glucose-based cationic surfactants was greater than lactose-based cationic surfactants.  相似文献   

2.
The naturally occurring (6Z)-(±)-2-methoxy-6-hexadecenoic acid (1) and (6Z)-(±)-2-methoxy-6-octadecenoic acid (2) were synthesized in 7–8 steps with 38 and 13% overall yields, respectively, by using an acetylide coupling approach, which made it possible to obtain a 100% cis-stereochemistry for the double bonds. In a similar fashion, the acetylenic analogs (±)-2-methoxy-6-hexadecynoic acid (3) and (±)-2-methoxy-6-octadecynoic acid (4) were also synthesized in 6–7 steps with 48 and 16% overall yields, respectively. The antibacterial activity of acids 14 was determined against clinical isolates of methicillin-resistant Staphylococcus aureus (ClMRSA) and Escherichia coli. Among the series of compounds, acid 4 was the most active bactericide towards CIMRSA displaying IC50s (half maximal inhibitory concentrations) between 17 and 37 μg/mL, in sharp contrast to the 6-octadecynoic acid, which was not bactericidal at all. On the other hand, acids 1 and 3 were the only acids that displayed antibacterial activity towards E. coli, but 1 stood out as the best candidate with an IC50 of 21 μg/mL. The critical micelle concentrations (CMCs) of acids 14 were also determined. The C18 acids 2 and 4 displayed a five-fold lower CMC (15–20 μg/mL) than the C16 analogs 1 and 3 (70–100 μg/mL), indicating that 4 exerts its antibacterial activity in a micellar state. None of the studied acids were inhibitory towards S. aureus DNA gyrase discounting this type of enzyme inhibition as a possible antibacterial mechanism. It was concluded that the combination of α-methoxylation and C-6 unsaturation increases the bactericidal activity of the C16 and C18 FA towards the studied bacterial strains. Acids 1 and 4 stand out as viable candidates to be used against E. coli and CIMRSA, respectively.  相似文献   

3.
A simple, eco-friendly phytosynthesis of copper oxide nanoparticles (CuO NPs) using Cassia auriculata leaf extract was reported. The prepared CuO NPs was characterized by UV–vis spectroscopy which exhibited the surface plasmon resonance (SPR) band at 380–385 nm. TEM and EDX analysis confirmed that CuO NPs were spherical and in size range of 30–35 nm with identified elements Cu and O. X-ray diffraction (XRD) spectrum showed the crystalline nature of the prepared CuO NPs. FTIR spectrum confirmed the presence of Cu–O functional groups. CuO NPs showed significant antibacterial efficacy against all the tested bacterial strains, i.e., Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. CuO NPs showed strong antibacterial action against B. subtilis and E. coli than P. aeruginosa and S. aureus. The results of this study revealed that C. auriculata leaf extract was found to be an effective bio-reducing agent for CuO NPs synthesis and also the antibacterial efficacy of phytofabricated CuO may be useful for its applications in medical and textile industries.  相似文献   

4.
Metallocene polyethylene/nano-silver coatings were prepared by a facile air-spray method on polymer films. Different from the prevailing strategy to endow polyethylene with antibacterial performance, we used metallocene polyethylene sol and nano-silver as a precursor to deposit coatings on polymers at a relatively low operating temperature. Antibacterial coatings with excellent mechanical properties, water resistance, and low silver release were achieved. The composite coatings were examined in terms of surface characteristics, mechanical properties, and antibacterial activity against two representative bacterial strains including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The composite coatings exhibited favorable microstructure, good mechanical properties, and suitable crystallinity. The antimicrobial tests indicated that the fabricated composite coatings showed promising antibacterial activity against E. coli and S. aureus. Furthermore, Ag ions released by the composite coating after 30 days were under 1.2 ppb. These results indicated a promising prospect of the composite coating for wide antibacterial applications.  相似文献   

5.
The intention of this study was to investigate the role of polyunsaturated fatty acids (PUFA) in the cold adaptation of Rhodosporidium kratochvilovae YM25235 by knockout of the Δ1215-fatty acid desaturase gene (RKD12) to inactivate Δ1215-fatty acid desaturase. Polymerase chain reaction (PCR) amplification was used to detect the genomic structure of RKD12 gene in YM25235. The RKD12 gene was knocked out by DNA homologous recombination to inhibit the biosynthesis of PUFA. Then, the contents of linoleic acid (LNA) and α-linolenic acid (ALA) after gene knockout were investigated using a gas chromatography-mass spectrometer, followed by determination of the growth rate and membrane fluidity of YM25235 at low temperature. After PCR amplification, a 1611 bp genomic fragment was amplified from YM25235. When the RKD12 gene was knocked out, the contents of LNA and ALA in YM25235 significantly decreased. The growth rate and membrane fluidity of YM25235 decreased significantly at low temperature. Inhibition of PUFA biosynthesis by RKD12 gene knockout influenced cold adaptation of YM25235 by decreasing the PUFA content in cell membranes and reducing the growth rate and membrane fluidity of YM25235 at low temperature.  相似文献   

6.
The surface of polypropylene (PP) fiber was modified by UV-induced graft polymerization of 1-vinylimidazole (Vim), followed by quaternization with iodomethane, sulfonation with chlorosulfonic acid, or loading of silver (Ag) nanoparticles to endow the surface with antibacterial properties. The modified PP fibers were characterized by FT-IR, SEM, and surface charge analyses. The antibacterial activity of the modified PP fibers was assessed against the Gram-negative and Gram-positive bacteria, Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus), respectively. The PP-g-Vim was greatly improved by loading of Ag nanoparticles (≥99.9%), quaternization (98.9–99.2%), or sulfonation (≥99.9%).  相似文献   

7.
JH Kim  J Kim  Y Park 《Lipids》2012,47(9):855-863
The supplementation of conjugated linoleic acid (CLA) has been shown to improve endurance by enhancing fat oxidation during exercise in rodents and humans. This study was designed to investigate the isomer-specific effects of CLA on endurance capacity and energy metabolism in mice during exercise. Male 129Sv/J mice were divided into three dietary groups and fed treatment diet for 6 weeks; control, 0.5 % cis-9,trans-11 (c9,t11) CLA, or 0.5 % trans-10,cis-12 (t10,c12) CLA. Dietary t10,c12 CLA induced a significant increase in maximum running time and distance until exhaustion with a dramatic reduction of total adipose depots compared to a control group, but there were no significant changes in endurance with the c9,t11 CLA treatment. Serum triacylglycerol and non-esterified fatty acid concentrations were significantly lower in the t10,c12 fed mice after exercise compared to control and the c9,t11 CLA fed-animals. Glycogen contents in livers of the t10,c12 fed-mice were higher than those in control mice, concomitant with reduction of serum l-lactate level. There were no differences in non-exercise physical activity among all treatment groups. In addition, the mRNA expression levels of carnitine palmitoyl transferase 1β, uncoupling protein 2 and peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle during exercise were significantly up-regulated by the t10,c12 CLA but not the c9,t11 CLA. These results suggest that the t10,c12 CLA is responsible for improving endurance exercise capacity by promoting fat oxidation with a reduction of the consumption of stored liver glycogen, potentially mediated via PPARδ dependent mechanisms.  相似文献   

8.
Three new amphiphilic compounds i.e., n-decyl-3-methylpyridinium bromide (a), n-dodecyl-3-methylpyridinium bromide (b), and n-tetradecyl-3-methylpyridinium bromide (c), have been synthesized by condensation reaction and characterized by NMR (1H, 13C) and FTIR spectroscopic techniques. The micellization behavior of the compounds has been studied in ethanol employing conductometry and UV/visible spectroscopy. The critical micellization concentration (CMC) values for compound a, b and c was found to be 0.31, 0.29 and 0.27 m mol L?1, respectively. Effect of temperature on the CMC was checked in the range of 298-318 K. The thermodynamic parameters such as ΔG, ΔH and ΔS of the micellization process of these surfactants were computed. The negative values of ΔG and positive values of ΔH indicated the spontaneous and endothermic nature of the micellization process. Antimicrobial activities of these amphiphiles showed significant activity against different bacterial strains.  相似文献   

9.
A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.  相似文献   

10.
Methylobacterium organophilum XX is a type II facultative methylotroph that can grow on methanol. In M. organophilum XX, the MxcQ/MxcE two-component system (TCS) is involved in methanol metabolism. EnvZ/OmpR in E. coli TCS was exploited to develop a methanol biosensor by engaging the MxcQ/MxcE TCS system. The MxcQZ/OmpR methanol sensing chimeric TCS was constructed by integrating the sensing domain of M. organophilum MxcQ with the transmitter domain of E. coli EnvZ. The response regulator of the chimeric TCS system is OmpR, which regulates the expression of the ompC and gfp. The expression of ompC was monitored by real-time quantitative PCR analysis. The expression of gfp also confirmed the expression of the ompC. The maximum expression of ompC and gfp occurred with 0.05% of methanol, and the expression started to decline with further increases in methanol concentration. This system delivers rapid detection of methanol in the environment.  相似文献   

11.
Jernerén F  Oliw EH 《Lipids》2012,47(7):707-717
(8R)-Hydroperoxy-(9Z,12Z)-octadecadienoic acid (8-HPODE) is formed by aspergilli as an intermediate in biosynthesis of oxylipins with effects on sporulation. 8-HPODE is transformed by separate diol synthases to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxy-(9Z,12Z)-octadecadienoic acids (5,8- and 8,11-DiHODE). The former is formed by the cytochrome P450 (P450) domain of 5,8-linoleate diol synthase (5,8-LDS or PpoA). Our aim was to characterize the 8,11-diol synthase of Aspergillus fumigatus, which is prominent in many strains. The 8,11-diol synthase was soluble and had a larger molecular size (>100 kDa) than most P450. Miconazole, ketoconazole, and 1-benzylimidazole, classical inhibitors of P450, reduced the biosynthesis of 8,11-DiHODE from 8-HPODE (apparent IC50 values ~0.8, ~5, and ~0.6 μM, respectively), but did not inhibit the biosynthesis of 5,8-DiHODE. Analysis of hydroperoxides of regioisomeric C18 and C20 fatty acids showed that the 8,11-diol synthase was specific for certain hydroperoxides with R configuration. The suprafacial hydrogen abstraction and oxygen insertion at C-11 of 8-HPODE was associated with a small deuterium kinetic isotope effect (H k cat/D k cat ~1.5), consistent with P450-catalyzed oxidation. The genome of A. fumigatus contains over 70 P450 sequences. The reaction mechanism, size, and solubility of 8,11-diol synthase pointed to PpoB, a homologue of 5,8-LDS, as a possible candidate of this activity. Gene deletion of ppoB of A. fumigatus strains AF:?ku80 and J272 did not inhibit biosynthesis of 8,11-DiHODE and recombinant PpoB appeared to lack diol synthase activity. We conclude that 8,11-DiHODE is formed from 8-HPODE by a soluble and substrate-specific 8,11-diol synthase with catalytic characteristics of class III P450.  相似文献   

12.
Silver nanoparticles (AgNPs) were successfully synthesized from the reduction of Ag+ using AgNO3 solution as a precursor and Brassica rapa var. japonica leaf extract as a reducing and capping agent. This study was aimed at synthesis of AgNPs, exhibiting less toxicity with high antibacterial activity. The characterization of AgNPs was carried out using UV–Vis spectrometry, energy dispersive X-ray spectrometry, fourier transform infrared spectrometry, field emission scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry, and transmission electron microscopy analyses. The analyses data revealed the successful synthesis of nano-crystalline Ag possessing more stability than commercial AgNPs. The cytotoxicity of Brassica AgNPs was compared with commercial AgNPs using in vitro PC12 cell model. Commercial AgNPs reduced cell viability to 23% (control 97%) and increased lactate dehydrogenase activity at a concentration of 3 ppm, whereas, Brassica AgNPs did not show any effects on both of the cytotoxicity parameters up to a concentration level of 10 ppm in PC12 cells. Moreover, Brassica AgNPs exhibited antibacterial activity in terms of zone of inhibition against E. coli (11.1?±?0.5 mm) and Enterobacter sp. (15?±?0.5 mm) which was higher than some previously reported green-synthesised AgNPs. Thus, this finding can be a matter of interest for the production and safe use of green-AgNPs in consumer products.  相似文献   

13.
Two propoxylated quaternary amine surfactants characterized by two and six average PO adduct numbers (PO-2 and PO-6 QA surfactants) were synthesized to investigate the micellar properties of propoxylated cationic surfactants in water/alcohol mixtures. The effect of PPO groups on micelle formation was explored using conductivity, UV–vis spectroscopy, dynamic light scattering techniques. Regular or reverse micellization occur with water or alcohol rich solvent mixtures, respectively. For intermediate composition no micellization occurs. Also the performances in antibacterial and antistatic fabrics were studied. PO-2 QA surfactant has excellent antibacterial activities against both the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus while both surfactants have good antistatic activity over polyester fabric.  相似文献   

14.
We have developed a whole-cell bioconversion system for the production of d-1,2,4-butanetriol (BT) from renewable biomass. A plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC was constructed and transformed to Escherichia coli BL21(DE3) to obtain the whole cells of E. coli BL21-XYMA capable of bioconversion d-xylose to BT. Then, the factors including carbon sources, nitrogen sources, metal ions, and culture conditions (pH, temperature, IPTG) were identified, and their effects on the whole-cell activity for BT production were investigated. To obtain the highest whole-cell activity, the optimal cultivation parameters are: 15 g·L–1 yeast extract, 5 g·L–1 sucrose, 3 g·L–1 KH2PO4, 5 g·L–1 NaCl, 3 g·L–1 NH4Cl, 0.25 g·L–1 MgSO4·7H2O and 1 mL·L–1 the mixture of trace elements. With the optimized whole cells of E. coli BL21-XYMA, 60 g·L–1 of xylose was converted to 28 g·L–1 BT with a molar yield of 66 %, which is higher than those reported in the biotechnological system.
  相似文献   

15.
Silver nanoparticles have been fabricated by the method of chemical reduction in solution using different types of stabilizers: an organic low-molecular compound—sodium dioctyl sulfosuccinate (AOT)— and a natural biologically active substance—antimicrobial cationic polypeptide lysozyme. According to studies of the produced hydrosols, the average size of the shell-coated particles is 20–25 nm. The biological activity of the obtained bioconjugates toward Gram-negative (Escherichia coli ML35p, Pseudomonas aeruginosa (clinical isolate)) and Gram-positive (Listeria monocytogenes EGD (АТСС ВАА-679), MRSA ATCC 33591 (Staphylococcus aureus resistant to methicillin)) bacteria has been investigated by the methods of radial diffusion in an agarose gel and serial dilution in a liquid nutritional medium. It has been established that the antimicrobial activity of the bioconjugates depends on the nature of the used stabilizer.  相似文献   

16.
The effects of amino acids (glycine, l-alanine, l-valine, l-leucine) and glycyl dipeptides (glycylglycine, glycyl-l-valine, glycyl-l-leucine) on the micellization behaviour of antibacterial drug domiphen bromide in aqueous solution as a function of temperature were studied by both conductivity and fluorescence spectroscopy. Critical micellar concentration, degree of counterion dissociation (α), limiting molar conductivity (Λ 0), and a series of thermodynamic parameters of micellization of domiphen bromide have been calculated from the specific conductivity data. The I 1/I 3 ratios associated with pyrene fluorescence vibronic bands were used to interpret the variation of micropolarity caused by the interactions between domiphen bromide and amino acids/glycyl dipeptides. The mean aggregation number of domiphen bromide was determined by a fluorescence quenching method. Effects of temperature, concentration, and alkyl chain length of the amino acids/glycyl dipeptides on the above properties were examined. Amino acids and glycyl dipeptides effectively enhance the surface activity of domiphen bromide solution. The intensity of amino acid/dipeptide-domiphen bromide interaction increased with the hydrophobicity of the amino acid/glycyl dipeptide.  相似文献   

17.
The partition of n-butanol in Winsor type III (W-III) microemulsions was investigated in this work. Three kinds of anionic surfactants (sodium dodecyl sulfate (SDS), sodium dodecyl sulfonate (DSS), and sodium dodecyl benzene sulfonate (SDBS)) and two kinds of anionic/cationic surfactant mixtures (SDS/octadecyl trimethyl ammonium chloride (OTAC) mixtures and DSS/OTAC mixtures) were studied. Internal standard gas chromatography was employed in n-butanol content analysis. The results showed that no water exists in the excess oil (EO) phase and no oil exists in the excess water (EW) phase. For the W-III microemulsions obtained by salinity scanning, relatively constant n-butanol content in the EO (11–12 v%) and EW (1–4 v%) was found under different salinities. Accurate measurement of n-butanol content in each phase is important for those systems having low solubilization ability. For the W-III microemulsions prepared using SDS/OTAC surfactant mixture, the percentage of n-butanol distributed into the interfacial layer decreased while the fraction of n-butanol in the interfacial layer first increased sharply and then tended to be stable with the addition of n-butanol. For the different optimum W-III microemulsion systems tested, most of the surfactant-to-alcohol molar ratio data are near 1:3, but obvious deviation could be observed for some data. On the basis of the accurate measurement of n-butanol content in the EO and EW phases, the standard free energy, ΔG o→in * (T = 298.15 K) of n-butanol transferring from the EO phase to the interfacial region was calculated. The results show negative ΔG o→in * values. For microemulsions with the same components, n-butanol content is an important factor influencing the ΔG o→in * value, and a high absolute value of ΔG o→in * leads to high solubilization ability.  相似文献   

18.
Static and dynamic magnetic properties of SHS-produced BaFe12–2x (Co х Ti х )O19 (х = 1.0, 1.1, 1.2) and SrFe12–2y (Co y Ti y )O19 (0 ≤ y ≤ 1.0) hexaferrites were characterized by magnetization and FMR measurements. Dynamic properties of SrFe12–2y (Co y Ti y )O19 hexaferrites were rationalized in terms of not only magnetic anisotropy but also the anisotropy of magnetomechanical ratio. SHS-produced ferrites can be recommended for designing radar-absorbent coatings and other SHF devices operating in the range 20–50 GHz.  相似文献   

19.
Atractylodes rhizome is widely used in traditional Chinese herbal medicine. Although the chemical composition of the root has been studied in detail, the oil content and fatty acid composition of the seeds of Atractylodes species have not been reported. Fatty acyl composition of seeds from Atractylodes lancea and A. macrocephala was determined by gas chromatography and mass spectrometry of fatty acid methyl esters and 3-pyridylcarbinol esters. The predominant fatty acid in the seeds of both species was linolenic acid, but the unusual acetylenic fatty acid, crepenynic acid (cis-9-octadecen-12-ynoic acid), was also observed at levels of 18% in A. lancea and 13–15% in A. macrocephala. Fatty acid content was 24% for the samples of A. lancea and 16–17% for samples from A. macrocephala. sn-1,3 regioselective lipase digestion of seed lipids revealed that crepenynic acid was absent from the sn-2 position of the seed triacylglycerol. Crepenynic acid was also found in the seed oil of Jurinea mollis at 24% and was not present in the sn-2 position of the TAG. A contrasting distribution of crepenynic acid was found in the oil of Crepis rubra, suggesting differences in crepenynic acid synthesis or TAG assembly between these species.  相似文献   

20.
Orthaga achatina (Lepidoptera: Pyralidae) is the most serious pest in south China of camphor trees, Cinnamomum camphora (L.) Presl, an important urban tree species. Gas chromatography-electroantennographic detection (GC-EAD) of the sex pheromone of O. achatina showed three EAD-active components. Coupled gas chromatography/mass spectrometry analyses identified these as (Z)-11-hexadecenol (Z11–16:OH), (Z)-11-hexadecenyl acetate (Z11–16:OAc), and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene (Z3,Z6,Z9,Z12,Z15–23:H). In field tests using different combinations of the three compounds, male moths were attracted to a mixture of Z11–16:OAc and Z3,Z6,Z9,Z12,Z15–23:H, but less attracted to other blends. Further field tests with different ratios of the two compounds determined the optimal ratio of the binary blend as 500:250. The addition of Z11–16:OH to Z11–16:OAc, or to the binary mixture of Z11–16: OAc and the pentaene did not yield higher catches. This shows that O. achatina uses a mixture of Type I and Type II sex pheromone components. Orthaga achatina is the third Pyraloidea species found to utilize Z3,Z6,Z9,Z12,Z15–23:H as a sex pheromone component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号