首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four anionic gemini surfactants of the sulfate type C12CnC12, where n is the spacer chain length (n = 3, 4, 6, and 10) were synthesized. The structures of these surfactants were confirmed by FT‐IR, 1H NMR, ESI mass spectra (ESI‐MS), and elemental analysis. The surface‐active properties of these compounds were investigated by means of surface tension, electrical conductivity, and fluorescence measurements. Premicellar aggregations were found for the four gemini surfactants, as revealed by the conductivity measurement. The formation of premicellar aggregates may account for the discrepancy between the critical micelle concentration (cmc) obtained by the surface tension and conductivity measurement. The cmc values of these gemini surfactants were much lower than that of sodium dodecylsulfate (SDS) and decreased monotonously with the increase of spacer chain length from 3 to 10. The effect of spacer chain length on the performance properties like foaming, emulsion stability, and lime soap dispersing ability were also studied and discussed. Practical applications : Alkyl sulfate surfactants are one of the most widely used surfactants. The new alkyl sulfate gemini surfactants synthesized in our study are more surface‐active than sodium dodecylsulfate. These gemini surfactants possess low critical micelle concentrations, high emulsion stability, and excellent lime soap dispersing ability. They have potential applications in the fields of cosmetics, detergents, etc.  相似文献   

2.
A series of anionic gemini surfactants with the same structure except the spacer nature have been studied. Their solution properties were characterized by the equilibrium surface tension and intrinsic fluorescence quenching method. The critical micelle concentrations (CMC), surface tension at cmc, C20, and the micelle aggregation number (N) were obtained. The surface tension measurements indicate that these gemini surfactants have much lower cmc values and great efficiency in lowering the surface tension of water compared with those of conventional monomeric surfactants. Furthermore, the standard free energy of micellization for anionic gemini surfactants was also determined. The results showed that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in aqueous solutions. The surfactant with a hydrophilic, flexible spacer was more readily able to form micelle compared with the surfactant with a hydrophobic, rigid spacer, which leads to a lower CMC value, larger N, more negative free energy of micellization, and a more closely packed micelle structure.  相似文献   

3.
In order to enhance oil recovery from high‐salinity reservoirs, a series of cationic gemini surfactants with different hydrophobic tails were synthesized. The surfactants were characterized by elemental analysis, infrared spectroscopy, mass spectrometry, and 1H‐NMR. According to the requirements of surfactants used in enhanced oil recovery technology, physicochemical properties including surface tension, critical micelle concentration (CMC), contact angle, oil/water interfacial tension, and compatibility with formation water were fully studied. All cationic gemini surfactants have significant impact on the wettability of the oil‐wet surface, and the contact angle decreased remarkably from 98° to 33° after adding the gemini surfactant BA‐14. Under the condition of solution salinity of 65,430 mg/L, the cationic gemini surfactant BA‐14 reduces the interfacial tension to 10?3 mN/m. Other related tests, including salt tolerance, adsorption, and flooding experiments, have been done. The concentration of 0.1% BA‐14 remains transparent with 120 g/L salinity at 50 °C. The adsorption capacity of BA‐14 is 6.3–11.5 mg/g. The gemini surfactant BA‐14 can improve the oil displacement efficiency by 11.09%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46086.  相似文献   

4.
Experimental studies were conducted to investigate thermal and interfacial properties of two in‐house synthesized amido‐amine‐based cationic gemini surfactants namely: dodecanoic acid [3‐({4‐[(3‐dodecanoylamino‐propyl)‐dimethyl‐amino]‐butyl}‐dimethyl‐amino)‐propyl]‐amide dibromide ( 12‐4‐12 ) and dodecanoic acid [3‐({6‐[(3‐dodecanoylamino‐propyl)‐dimethyl‐amino]‐hexyl}‐dimethyl‐amino)‐propyl]‐amide dibromide ( 12‐6‐12 ). Thermogravimetric analysis showed the excellent thermal stability of surfactants and no structural degradation was observed at temperatures up to 250 °C. The long‐term thermal stability of the surfactants was investigated with the aid of spectroscopic techniques such as nuclear magnetic resonance (NMR (1H and 13C) and Fourier transform infrared (FTIR) spectroscopy. Both surfactants were found to be thermally stable, and no changes in structure were observed after aging for 10 days at 90 °C. The interfacial tension of the surfactants was measured at three different temperatures (30, 60, and 80 °C), and the results showed a decrease in interfacial tension with increasing temperature and increasing spacer length of the surfactants. Rheological measurements were used to assess the interactions between the cationic gemini surfactant and cationic polyacrylamide. The addition of cationic surfactant reduced the viscosity and storage modulus of the polymer at low shear rate and frequency due to surfactant–polymer interactions and charge screening. The investigated surfactant–polymer system has great potential in high‐temperature carbonate reservoirs, where conventional anionic surfactants are not recommended due to high adsorption.  相似文献   

5.
A series of carboxylate gemini surfactants, which contain two hydrocarbon chains linked by amide groups, two carboxylate groups, a flexible alkane spacer were synthesized by three-step reactions and named alkylidene–bis-(N,N′-dodecyl-carboxypropylamides) (2C12H25CnAm; n = 2, 3, 4, 6, 8 is the number of methylene groups of the spacer), their structures were confirmed by FTIR,1H NMR, and LC–MS/TOF, and their purity checked by HPLC. The micellar properties with increasing spacer chain length of these gemini surfactants were determined by surface tension methods. The critical micelle concentration (CMC) varies slightly with spacer chain length; surface tension at CMC(γCMC), the tendency of micellization versus adsorption, CMC/C20, the minimum area per surfactant molecule at the air/solution interface (ACMC), all decrease with increasing spacer chain length; surface reduction efficiency, pC20, the surface excess at the air/solution interface (ГCMC) increase with increasing spacer chain length. The results probably indicate that increasing spacer chain length of these carboxylate gemini surfactants will increase spacer incorporation into the double hydrophobic chain.  相似文献   

6.
A new cationic gemini surfmer (polymerizable surfactant or surface-active monomer) with an acrylic reactive group in its spacer group was synthesized and characterized, and its surface activity properties were examined in comparison with its intermediate surfactant 12-3OH-12·2Cl, a previously-reported gemini surfmer 12′-2-12′·2Br, as well as monomeric surfactant dodecyl trimethylammonium bromide. It was found that neither the incorporation of a double bond onto the gemini surfactant nor the change of location of the double bond will affect surface activities of the gemini surfactant.  相似文献   

7.
A series of cationic gemini surfactants containing different spacer length were synthesized and analyzed structurally. It was shown that the surface tension (σ) and critical micelle concentration (CMC), which had a maximum for the n-C4H8 spacer depended on the spacer length. The foaming ability and foam stability are high for the gemini surfactants with short spacers (C2H4 to n-C4H8), while longer spacers lead to a distinct decrease of these foam parameters. Foaming properties are discussed in terms of configuration and conformation of a surfactant molecule and in relation to micellization state kinetic.  相似文献   

8.
A series of cetyl alcohol based anionic bis‐sulfosuccinate gemini surfactants (BSGSCA1,4; BSGSCA1,6 and BSGSCA1,8) with different spacer lengths was prepared using dibromoalkanes. The surfactant structure was elucidated using elemental analysis, Fourier transform infrared spectroscopy (FT‐IR) and nuclear magnetic resonance spectroscopy (NMR). Surface tension measurements were used to determine the critical micelle concentration (CMC), the surface tension at the CMC (γCMC), surface pressure at the CMC (πCMC) and efficiency of adsorption (pC20). On the basis of surface studies, the CMC and γCMC decreases with increasing length of the spacer group. The micelle aggregation number, determined by fluorescence quenching studies, increases with increasing surfactant concentration above the CMC. The micropolarity in the micelle increases with increasing length of the spacer and decreases with increasing surfactant concentration.  相似文献   

9.
A series of cationic gemini surfactants containing two dimethylalkylammonium chains linked by ethylene glycol bisacetyl spacers were synthesized [Gm‐AnA‐m, G = gemini surfactant, m = 12 (–C12H25), 14 (–C14H29), or 16 (–C16H33), A = acetyl, and n = 2, 3, or 4 is the number of ethylene glycol units in the spacers]. Because of the inductive effect of the oxygen atom in the spacer, acylation can take place using chloroacetyl chloride instead of bromoacetyl bromide which helps to limit the use of environmentally harmful reagents. Critical micelle concentrations were determined using conductivity measurements. The antibacterial activities of the surfactants against Gram‐positive bacterium Staphylococcus aureus and Gram‐negative bacterium Escherichia coli were evaluated from the minimum inhibitory concentration (MIC), minimum bacterial concentration, a time–kill study, and the inhibitory zone. Increasing the length of the spacer did not result in an obvious change of antibacterial activity. However, increasing the length of the alkyl chain apparently increased the antibacterial activity against S. aureus but decreased the antibacterial activity against E. coli. The G12‐A2A‐12 surfactant had the lowest CMC of 1.26 mmol L?1 and exhibited the best antibacterial activity with a MIC of 32 μg mL?1 toward S. aureus and 64 μg mL?1 toward E. coli in the presence of 105 CFU of bacteria. This work indicated that these cationic gemini surfactants have potential applications as antibacterial agents and emulsifiers.  相似文献   

10.
A group of cationic gemini surfactants (bisquaternary ammonium bromides) with different spacer chain lengths (8–6–8, 8–7–8, 8–8–8, 8–9–8) was investigated, paying special attention to antimicrobial and the cytotoxic properties as well as their antimicrobial activity during long‐term storage. It was shown that the compounds investigated exhibit excellent antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus) and Gram‐negative bacteria (Pseudomonas aeruginosa) as well as antifungal properties (Candida albicans). The gemini surfactants tested had the differential level of cytotoxicity against normal lymphocytes. It was shown that the spacer chain length plays an important role in antibacterial activity and influences the cytotoxicity. The gemini surfactants with shorter spacer chain length, that had higher critical micelle concentration, showed generally weaker antibacterial properties, but on the other hand, these exhibited lower level of cytotoxicity. Furthermore, the aqueous solution of gemini surfactants exhibited the same antimicrobial activity even after 3 months.  相似文献   

11.
High‐temperature/high‐salinity (HTHS) reservoirs contain a significant fraction of the world's remaining oil in place and are potential candidates for enhanced oil recovery (EOR). Selection of suitable surfactants for such reservoirs is a challenging task. In this work, two synthesized zwitterionic surfactants bearing a saturated and an unsaturated tail, namely 3‐(N‐stearamidopropyl‐N,N‐dimethyl ammonium) propanesulfonate and 3‐(N‐oleamidopropyl‐N,N‐dimethyl ammonium) propanesulfonate, respectively, were evaluated. The surfactant with the unsaturated tail showed excellent solubility in synthetic seawater (57,643 ppm) and in formation brine (213,734 ppm). However, the unsaturated surfactant with a saturated tail showed poor solubility, and therefore it was not evaluated further. The thermal stability of the synthesized unsaturated surfactant solution in seawater was evaluated by heating the solution at 90 °C in a sealed aging tube for 2 weeks. The thermal stability of the unsaturated surfactant was confirmed by FTIR and NMR analysis of the aged samples at such harsh conditions. The critical micelle concentration (CMC) of the synthesized unsaturated surfactant in seawater was 1.02 × 10?4 mol L?1, while the surface tension at CMC was 30 mN m?1. The synthesized unsaturated surfactant was able to reduce the oil–water interfacial tension to ~10?1 mN m?1 at different conditions. A commercial copolymer of acrylamide and 2‐acrylamido‐2‐methylpropane sulfonic acid (AM‐AMPS) was tested for EOR applications in HTHS conditions. The addition of the synthesized unsaturated surfactant to the AM‐AMPS copolymer increased the viscosity of the system. The increase in oil recovery by injecting the unsaturated surfactant solution and the surfactant–polymer mixture in solution was 8 and 21%, respectively. The excellent properties of the synthesized unsaturated surfactant show that surfactants with an unsaturated tail can be an excellent choice for HTHS reservoirs.  相似文献   

12.
Tuning physicochemical properties of aqueous surfactant solutions comprised of normal or reverse micelles by external additives is of utmost importance due to the enormous application potential of surfactant‐based systems. Unusual and interesting properties of environmentally benign ionic liquids (IL) make them suitable candidates for this purpose. To understand and establish the role of IL in modifying properties of aqueous gemini surfactants, we studied the effect of the IL, 1‐hexyl‐3‐methylimidazolium bromide ([Hmim][Br]) and 1‐octyl‐3‐methylimidazolium bromide ([Omim][Br]) on the properties of the aqueous cationic gemini surfactant 1,6‐hexanediyl‐α,ω‐bis(dimethyltetradecyl)ammonium bromide (14‐6‐14,2Br?). The behavioral changes were investigated by measuring the critical micelle concentration (CMC) using electrical conductance, surface tension, dye solubilization and fluorescence probe measurements at 298.15 K. It was observed that the CMC of 14‐6‐14,2Br? gemini surfactant decreases with addition of IL, thus favoring the micellization process. An increase in micellar size was observed at lower IL concentration using dynamic light scattering, with a decrease in aggregation number (Nagg) determined from fluorescence probe quenching measurements. It is noteworthy that the extent of modulation of the micellar properties is different for both the IL due to their structural differences. IL behave like electrolytes at lower concentrations and cosurfactants at higher concentrations and form mixed micelles with the cationic gemini surfactant showing an increase in Nagg.  相似文献   

13.
The interaction between mixtures of nonionic surfactant polyethylene glycol p-(1,1,3,3-tetramethyl butyl)-phenyl ether and cationic gemini surfactants alkanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-s-12, where s = 2, 4 and 6) was studied using surface tension and small-angle neutron scattering measurements. Marked interaction was observed for the investigated surfactants mixtures which depend upon the hydrophobic spacer length of the gemini surfactant and also on the fraction of nonionic surfactant in the mixed systems. The results are discussed in terms of interaction parameters calculated according to the theory of regular solutions which uses the critical micelle concentration determined tensiometrically to calculate the molecular interaction parameter and the mole fractions of the two components in the mixed micelles. A relatively high negative molecular interaction parameter value (up to −3.40) obtained for mixtures of nonionic and cationic gemini surfactant indicates a presence of strong attractive interaction in the mixed system that increases with the spacer length of the gemini surfactant. Micellar parameters deduced from small-angle neutron scattering measurements also compliment the surface tension results.  相似文献   

14.
A series of rosin-based cationic gemini surfactants with different spacer length (n = 2, 3, 4) were synthesized and characterized. Surface activity and micellization parameters including the critical micelle concentration, the degree of counterion dissociation, and thermodynamic functions of micellization in aqueous solutions have been investigated. Free energy perturbation was performed to study the enthalpy-entropy compensation of the synthesized gemini surfactants in aqueous solutions. The experimental results showed that the micellization of rosin-based gemini surfactants in aqueous solutions is a spontaneous and entropy-driven process. The micellization process was found to follow the entropy–enthalpy compensation phenomenon.  相似文献   

15.
Aggregation of α,ω-bisammonium cationic gemini surfactants with a variable polymethylene spacer and two dodecyl chains has been studied on a solid surface and in aqueous solution. Scanning electron microscopy and dynamic light scattering with the time-resolved fluorescence quenching technique were used for the experiments on the solid surface and in aqueous solution, respectively. As the results from the scanning electron microscopy indicate, the morphology of supramolecular structures of gemini surfactants at the solid surface depends on the spacer length. In aqueous solution, gemini surfactants with spacers consisting of 4, 6, 8, 10, and 12 CH2 groups form spherical micelles with diameters between 2 and 3.5 nm. Micelles of gemini surfactant with a short ethylene spacer show an increase in size up to 13 nm at the maximum concentration investigated. The aggregation number of micelles determined by time resolved fluorescence quenching was found to be in the range 14–25 for the spacer lengths from 6 to 12 CH2 groups with only a moderate increase with surfactant concentration. For micelles of gemini surfactants with the short ethylene spacer, the increase of the aggregation number up to 50 at the maximum concentration was observed. The findings support micellar growth of gemini surfactants with short ethylene spacer.  相似文献   

16.
A series of novel cationic gemini surfactants [CnH2n+1–O–CH2–CH(OH)–CH2–N+(CH3)2–(CH2)2]2·2Br? [ 3a (n = 12), 3b (n = 14) and 3c (n = 16)] having a 2‐hydroxy‐1,3‐oxypropylene group [?CH2–CH(OH)–CH2–O–] in the hydrophobic chain have been synthesized and characterized. Their water solubility, surface activity, foaming properties, and antibacterial activity have been examined. The critical micelle concentration (CMC) values of the novel cationic gemini surfactants are one to two orders of magnitude smaller than those of the corresponding monomeric surfactants. Furthermore, the novel cationic gemini surfactants have better water solubility and surface activity than the comparable [CnH2n+1–N+(CH3)2–(CH2)2]2·2Br? (n‐4‐n) geminis. The novel cationic gemini surfactants 3a and 3b also exhibit good foaming properties and show good antibacterial and antifungal activities.  相似文献   

17.
A novel anionic gemini surfactant containing an ester bond in the spacer group was synthesized using cardanol as the raw material and characterized by IR, 1H NMR and 13C NMR. The surface properties of the gemini surfactant were investigated and compared with its corresponding single chain surfactant counterpart. It was found that this novel gemini surfactant exhibited a low critical micelle concentration value (1.9 mM) and good efficiency in reducing surface tension of water (33.6 mN/m). The gemini surfactant was found to have antimicrobial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa), Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacteria and fungi (Aspergillus niger, Aspergillus flavus, Candida albicans and Rhizopus stolonifer). The gemini as well as the corresponding single chain surfactant showed good antimicrobial activity against all pathogenic microorganisms studied and can be employed as an antimicrobial agent. The synthesized novel anionic gemini surfactant possesses an excellent wettability and low foamability.  相似文献   

18.
A novel cationic gemini surfactant with the hydrophenanthrene structure has been synthesized from dehydroabietylamine. Its structure was confirmed by IR, 1H NMR, and elemental analysis. The critical micelle concentration (CMC) of the surfactant and its surface tension at the CMC (γ CMC) in aqueous solution were about 1.58 × 10?5 mol L?1 and 36.6 mN m?1 at 25 °C, respectively. The emulsion composed of equal amounts of benzene and an aqueous solution with 0.1 % gemini surfactant as emulsifier maintained its stability for 8.5 h. Meanwhile, the antimicrobial activities of the gemini surfactant against Pseudomonas aeruginosa, Escherichia aerogenes, and Staphylococcus epidermidis were much better than those of bromogeramine and ampicillin sodium against the same bacteria, and its minimum inhibitory concentrations (MIC) were 16, 32, and 4 μg mL?1, respectively.  相似文献   

19.
A series of dialkyl diphosphate gemini surfactants has been synthesized using C18 as hydrophobic chains and phosphate as head groups. Three flexible spacers have been used. In the present study, an attempt has also been made to synthesize mono octadecyl phosphate (MOP) at 35°C, which was used as an intermediate in the synthesis of geminis. This long chain of MOP has been effectively converted to gemini surfactants and subsequently converted to their disodium salts. The effect of reaction variables like temperature, duration, molar ratios of reactants, catalyst and spacer on the yield of dialkyl diphosphate gemini surfactant has also been reported. The MOP, gemini surfactants and disodium salt of gemini surfactants were characterized using FT‐IR and 1H‐NMR. Surface active and physico‐chemical properties of synthesized gemini surfactants and their monomer were also determined. The results revealed that the yield of dialkyl diphosphate gemini surfactants ranged from 80 to 90%. Among all synthesized dialkyl diphosphate gemini surfactants D, S‐1,6‐GSOD had maximum anionic content, i.e. 80.7%, showed highest foaming ability and superior dispersing ability, whereas D, S‐1,8‐GSOD showed low cmc values, i.e. 0.00012 mM/L; minimum surface tension and interfacial tension, i.e. 39.1 and 36.3 mN/m, respectively.  相似文献   

20.
含磷双子表面活性剂具有高的表面活性、良好的水溶性、较好的热稳定性、优越的抗静电性和配伍性等特点。综述了含磷双子表面活性剂的结构类型以及合成路线和方法,并按照阴离子型、两性型、非离子型含磷双子表面活性剂及其联接基团的不同进行了归纳。最后,对含磷双子表面活性剂的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号