首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cyclic dynamic loading on the kinetics of changes in the electrode potentials of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) superelastic medical alloys in a model solution simulating the bone tissue environment in a living organism is studied with the use of electrochemical chronopotentiometry. An increase in the applied load from 450 to 780 MPa is found to affect dramatically the character of changes in the electrode potentials of the alloys during exposure. Ti-22Nb-6Ta alloy exhibits higher resistance to corrosion fatigue cracking than does Ti-22Nb-6Zr alloy. It is shown that the superelasticity of the alloys is responsible for the deceleration of the corrosion fatigue cracking due to the blocking effect of martensite crystals formed in the structure during the loading half-cycle, which is confirmed by the low rate of the potential decrease after the nucleation of corrosion fatigue cracks.  相似文献   

2.
In the past decades, systematic researches have been focused on studying Ti-Nb-based SMAs by adding ternary elements, such as Mo, Sn, Zr, etc. However, only arc melting or induction melting methods, with subsequent hot or cold rolling, were used to fabricate these Ni-free SMAs. There is no work related to powder metallurgy and porous structures. This study focuses on the fabrication and characterization of porous Ti-22Nb-6Zr (at.%) shape memory alloys produced using elemental powders by means of mechanical alloying and hot isostatic pressing. It is found that the porous Ti-22Nb-6Zr alloys prepared by the HIP process exhibit a homogenous pore distribution with spherical pores, while the pores have irregular shape in the specimen prepared by conventional sintering. X-ray diffraction analysis showed that the solid solution-treated Ti-22Nb-6Zr alloy consists of both ?? phase and ???? martensite phase. Morphologies of martensite were observed. Finally, the porous Ti-22Nb-6Zr SMAs produced by both MA and HIP exhibit good mechanical properties, such as superior superelasticity, with maximum recoverable strain of ~3% and high compressive strength.  相似文献   

3.
研究了Ti2Al Nb基合金Ti-22Al-(27-x)Nb-x Zr(x=0,1,6,at%)在650~800℃的氧化行为。采用XRD和SEM等测试技术对此温度区间形成的氧化层特征进行了分析。结果表明,相比Ti-22Al-27Nb,含锆合金具有较好的抗氧化性能。Ti-22Al-(27-x)Nb-x Zr合金在650℃氧化100 h,主要氧化产物为Ti O2,而在800℃氧化100 h,Ti O2,Al2O3和Al Nb O4为主要产物,但是在Ti-22Al-21Nb-6Zr合金中还有Zr O2生成。Ti-22Al-26Nb-1Zr合金具有优异抗氧化性能,归因于氧化产物细化形成了致密的氧化层,而Ti-22Al-21Nb-6Zr合金,虽然在800℃也形成了较多Al2O3,但是氧化层中的Zr O2为氧的快速扩散提供通道,进而导致该合金氧化增重明显。  相似文献   

4.
Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.  相似文献   

5.
系统研究了Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0,5.0)合金的微观组织、拉伸性能、夏比冲击韧性和耐海水腐蚀性。结果表明,经α+β两相区锻造后,Ti-6Al-3Nb-2Zr-1Mo-5Ta合金获得片层组织,Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0)均获得双态组织。XRD、TEM和选区电子衍射表明,在添加Ta元素后,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金没有新相产生。对于双态组织Ti-6Al-3Nb-Zr-1M0-x Ta合金,随着Ta含量的增加,其Mo当量逐渐增加,导致其屈服强度、抗拉强度和显微硬度均有所提高。而Ta含量对冲击吸收功的影响规律与屈服强度和抗拉强度的影响规律相反,其大小与冲击断口剪切唇区面积一致。当Ta含量超过1.0%(质量分数)时,由于α和β相之间的标准平衡电位差逐渐增大,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金的耐海水腐蚀逐渐降低。综合考虑强度、冲击韧性和耐海水腐蚀性能,Ti-6Al-3Nb-2Zr-1Mo-1Ta合金综合匹配性最好,具有良好的海洋工程应用潜力。  相似文献   

6.
The effects of 0.3%(molar fraction, the same below) yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy were investigated by simulated isothermal forging tests. The ingots with the nominal compositions of Ti-45Al-5Nb and Ti-45Al-5Nb-0.3Y were prepared by induction skull melting. Simulated isothermal forging tests were conducted on Gleeble 1500D thermo-simulation machine using a 6 mm in diameter and 10 mm in length compressive specimen at the deformation temperatures of 1 100, 1 150, 1 200 ℃ and strain rates of 1.0, 0.1, 0.01 s^-1. The results show that yttrium addition remarkably improves hot deformability of Ti-45Al-5Nb alloy. An appropriate hot deformation processing parameter of Ti-45Al-5Nb-0.3Y alloy is determined as 1 200 ℃, 0.01 s^-1. The flow stresses are decreased by yttrium addition under the same compressive conditions. The activation energies of deformation Q are calculated as 448.6 and 399.5 kJ/mol for Y-free and Y-containing alloys, respectively. The deformed microstructure observation under 1 200 ℃, 0.01 s^-1 condition indicates that Ti-45Al-5Nb-0.3Y alloy shows more dynamic recrystallization. The improvement of hot deformability of Ti-45Al-5Nb-0.3Y alloy induced by yttrium addition should be attributed to that the smaller the original lamellar colonies, the lower the deformation resistance and activation energy of deformation are, and the more the dynamic recrystallization is.  相似文献   

7.
Ti-10Nb-10Zr-5Ta alloy was investigated as possible material candidate for replacing Ti6Al4V in medical applications. The alloy was prepared in a levitation melting furnace and characterized in terms of elemental and phase composition, microstructure, mechanical properties, and corrosion resistance in simulated body fluid and Fusayama Meyer artificial saliva solutions. The characteristics of the new alloy were compared to those of the Ti6Al4V alloy. The Ti-10Nb-10Zr-5Ta system was found to posses of a polyhedral structure consisting in α′ and β phases. X-ray structural analysis revealed a mixture of hexagonal α′ martensite (main phase, with grain size of about 21 nm) and β bcc phase. The Ti-10Nb-10Zr-5Ta alloy exhibited some better mechanical properties (Young modulus, tensile properties) and corrosion resistance (polarization resistance, corrosion current density, and corrosion rate), as compared to Ti6Al4V alloy.  相似文献   

8.
选取5种油气开发常用钛合金材料(Ti-6Al-4V、Ti-6Al-4V-0.1Ru、Ti-6Al-2Sn-4Zr-6Mo、Ti-3Al-8V-6Cr-4Zr-4Mo和Ti-5.5Al-4.5V-2Zr-1Mo)为研究对象,使用高温高压釜模拟国内典型严酷服役工况环境,研究了不同钛合金材料耐均匀腐蚀、局部腐蚀、点蚀、应力腐蚀开裂(SCC)及缝隙腐蚀的性能,通过使用扫描电镜和能谱分析等手段对腐蚀形貌和腐蚀产物进行了分析,并使用电化学方法对不同合金的耐腐蚀机理进行了研究。结果显示,在所测试工况条件下,所有钛合金材料腐蚀反应均为阳极控制过程,均匀腐蚀速率均低于0.001mm/a,并且对应力腐蚀开裂均有良好的抗力。Ti-6Al-4V和Ti-5.5Al-4.5V-2Zr-1Mo合金出现明显的点蚀和缝隙腐蚀问题。对腐蚀机理研究表明,在工况条件温度下,随着pH值的降低,所有钛合金均发生自腐蚀电位降低,极化电阻减小,腐蚀电流增大,耐腐蚀性能下降,其中Ti-6Al-4V耐腐蚀性能下降的最为明显,研究结果为油气开发工况下钛合金石油管的选材和缝隙腐蚀问题防治提供理论基础。  相似文献   

9.
Three new Ni-free Ti alloys Ti-16.2Hf-24.8Nb-1Zr, Ti-5.2Hf-31.2Nb-0.4Zr, and Ti-16Hf-36.2Nb-1Zr (wt.%), were designed and produced in order to obtain shape memory and/or low elastic modulus materials for the use in the load transfer implant field. For that, a method based on the molecular orbital theory was implemented to design the three new Ti-Nb-Hf system alloys. A vacuum arc-melted button of each alloy was treated at 1100 °C for 1.5 h and quenched in a mixture of ethanol/water at 0 °C. Finally, the alloys were microstructurally and mechanically characterized. Special attention on studying the elastic modulus and the thermoelastic martensitic transformation was given by means of nanoindentation tests using a Berkovich and a spherical tip, respectively. X-ray diffraction results showed the presence of β-phase in the three studied alloys. Moreover, one of the alloys exhibited reversible phase transformation due to the presence of thermoelastic martensitic α′′-plates inside the β-grains observed by transmission electron microscopy. Results showed a low elastic modulus in all the studied alloys with values between 70 and 90 GPa, which are lower than those of the commercial alloys used in load transfer bone implants.  相似文献   

10.
生物医用钛合金的研究进展   总被引:5,自引:0,他引:5  
钛合金具有较低的弹性模量、优异的耐腐蚀性能和生物相容性,是理想的生物医用材料.综述了医用钛合金的发展过程及新型医用β钛合金的研究现状,以及开发的新合金系列.目前开发的医用钛合金中,Ti-35Nb-7Zr-5Ta和Ti-29Nb-13Ta-7.1Zr合金的弹性模量为55 GPa,与致密骨的弹性模量很接近,与人体骨有较好的...  相似文献   

11.
Nb-Si in situ composites with a nominal composition of Nb-22Ti-12Si-X (at.%, X represents Ni, Co, B, or Ge) are prepared using non-consumable arc melting technology. The effects of the alloying elements on the microstructures and mechanical properties are investigated. The Nb-22Ti-12Si ternary alloy consists of Nbss and Nb3Si. A new phase of Ti2Ni or Ti2Co is introduced into the ternary system after adding Ni or Co. The addition of 6% Ge promotes the formation of Nb5Si3 and creates significantly finer microstructures. The values of the high temperature strength and room temperature fracture toughness of Nb-22Ti-12Si-6Ge are 566.33MPa and 12.81 MPa·m1/2, respectively, which are approximately 88.2% and 18.5% higher than those of Nb-22Ti-12Si (300.98 MPa and 10.81 MPa·m1/2). The addition of 3% B changed the morphological features and induced the appearance of large fine rosettes, which is favorable for restraining the crack propagation, and it also leads to a 22.3% increase in room temperature fracture toughness compared with the Nb-22Ti-12Si ternary alloy.  相似文献   

12.
The Ti-10Nb-10Zr-5Ta alloy, prepared in a levitation melting furnace, was investigated as a possible candidate for replacing Ti6Al4V alloy in medical applications. The sessile drop method, pin-on-disc and in vitro tests were used to analyze wettability, wear resistance, and biocompatibility of the new alloy. The characteristics of the Ti-10Nb-10Zr-5Ta alloy were assessed in comparison to those of the Ti6Al4V alloy. The Ti-10Nb-10Zr-5Ta system was found to have hydrophilic characteristics with similar contact angle as the Ti6Al4V alloy. In all environments (deionized water, simulated body fluid and Fusayama Meyer artificial saliva), the friction coefficient showed a stable evolution versus sliding distance, being similar for both alloys. On overall, the wear resistance of Ti-10Nb-10Zr-5Ta alloy was lower than that of Ti6Al4V for all testing environments. The Ti-10Nb-10Zr-5Ta alloy exhibited good biocompatibility characteristics at in vitro test compared to Ti6Al4V alloy. The cell viability on Ti-10Nb-10Zr-5Ta surfaces was higher than the one observed on Ti6Al4V samples, regardless the number of days spent in osteoblast-like cells culture. A high degree of cell attachment and spreading was observed on both alloys.  相似文献   

13.
The effect of enamel coating on long-term isothermal oxidation at 700 ℃ and cyclic oxidation at 800 ℃ in air and hot corrosion resistance of Ti-24Al-17Nb-0. 5Mo in 75% (Na2SO4 K2SO4 ) 25% NaCl (mass fraction) molten mixed salts at 700 ℃ was investigated. The results indicate that Ti-24Al-17Nb-0.5Mo alloy exhibits relatively poor long-term oxidation resistance due to the formation of Al2O3 TiO2 Nb2O5 mixed scales and poor hot corrosion resistance due to the spallation of scales formed in molten (Ns, K)2 SO4 NaCl. Enamel coating can effectively protect Ti-24Al-17Nb-0.5Mo alloy from long-term oxidation at high temperature in air and remarkably improve the hot corrosion resistance of Ti-24Al-17Nb-0. 5Mo alloy, and can act as the barrier to suppress the migration of oxygen and corrosive ions into the substrate.  相似文献   

14.
采用极化曲线分析、电化学阻抗谱(EIS)测试和浸泡实验的方法,并结合XPS,XRD和SEM等分析手段对新型医用Ti-24Nb-4Zr-8Sn合金在37℃的Hanks人工模拟体液中的电化学腐蚀行为进行了研究,并与纯Ti和Ti-6Al-4V合金进行了比较.结果表明:在37℃的Hanks溶液中,Ti-24Nb-4Zr-8Sn合金的腐蚀电流密度与纯Ti相等,并且钝化性能优于纯Ti和Ti-6Al-4V,这与其钝化膜中存在大量的Nb2O5密切相关;EIS结果显示,Ti-24Nb-4Zr-8Sn合金表面形成内层致密而外层疏松的双层钝化膜结构,致密层特性对材料的耐蚀性能起到决定性作用;随着浸泡时间的延长,致密内层的电阻大幅度提高,Ti-24Nb-4Zr-8Sn合金的耐蚀性能增强,同时疏松外层中的微缺陷发展成为宏观裂纹,造成疏松外层整体脱落.  相似文献   

15.
The present paper reported the phase stability and microstructures evolution of Nb-20Ti-16Si-xCr (x = 0~20at.%) in-situ composites as function of Cr addition. It was suggested that with the addition of Cr less than 7%, the silicide phase in as-cast Nb-20Ti-16Si alloy was Nb3Si. The silicides changed to be α-Nb5Si3 by the addition of Cr above 7%. It was found that annealing of 1300 ℃ for 100 h could result in the decomposition of Nb3Si to NbSS and α-Nb5Si3 in Cr containing Nb-20Ti-16Si based alloys by means ...  相似文献   

16.
The aim of this study was to investigate the effects of Hf content and immersion time on the electrochemical corrosion behavior of the Ti-22Nb-xHf (x = 0, 2, 4, and 6 at%) alloy samples in 0.9% NaCl solution at 37 °C and neutral pH range, utilizing the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. From the polarization curves, all these alloys exhibited typical passive behavior, which was indicated by a wide passive region without the breakdown of the passive films and low corrosion current densities. In addition, the values of the corrosion current densities and passive current densities decreased with increase in the Hf content. The EIS results, fitted by RS(QPRP) model, exhibited capacitive behavior (high corrosion resistance) with phase angles closed to −80° and high impedance values at low and medium frequencies, indicating the formation of a highly stable film on these alloys in the test solution. The resistance of the passive films improved with increase in the Hf content and immersion time. All these observations suggested a more noble electrochemical behavior of the Ti-22Nb-xHf alloys compared to the Ti-Nb binary alloy.  相似文献   

17.
为了评估Nb-Si基合金是否能作为刀具材料应用,研究了3个Nb-Ti-Si-B合金(1#: Nb-12Ti-16Si-16B,2#: Nb-23.5Ti-16Si-10B,3#: Nb-20Ti-16Si-1.5B)的显微硬度和宏观硬度。这3个合金分别来自Nb-Ti-Si-B四元体系液相面投影图中的NbB、Nb3B2和Nb3Si初生相区。显微硬度采用HX-1000TM型硬度计测试,选用200 g载荷,加载保持时间为15 s。宏观硬度采用HRC洛氏硬度测试。铌基金属间化合物具有较高的显微硬度:1#合金中NbB的硬度为16.58 GPa、2#合金中Nb3B2的硬度为10.08 GPa、3#合金中Nb3Si的硬度为12.12 GPa。强的化学键和元素的置换互溶是铌基金属间化合物高硬度的影响因素。另外,3个合金的宏观硬度HRc分别为77、75和78,3个合金中都具有一定体积分数的高硬度金属间化合物,这是高的宏观硬度的主导因素。Nb-Ti-Si-B合金的宏观硬度值高于工具钢(HRc~65)和高速钢(HSS, HRc~67)。  相似文献   

18.
A.K. Shukla 《Corrosion Science》2006,48(7):1696-1720
The effect of an alkaline surface treatment on the electrochemical behavior of CP titanium, Ti-6Al-4V and Ti-13Nb-13Zr has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Experiments were performed in Hank’s solution as a function of immersion time. The electrochemical behavior of untreated alloys was also studied. Potentiodynamic polarization experiments conducted after 1 and 168 h of immersion in Hank’s solution indicated minimal change in passive current density for the untreated alloys. EIS data obtained after 1, 24, 72 and 168 h for untreated alloys also indicated minimal change in passive film resistance. In the case of surface-treated alloys, EIS revealed the formation of one additional layer on CP Ti and two additional layers on Ti-6Al-4V and Ti-13Nb-13Zr alloys after surface treatment and immersion in Hank’s solution. Some ideas about the nature of these layers have been obtained by fitting the EIS data to equivalent electrical circuit models. The surfaces of the treated Ti-alloys were also characterized using X-ray diffraction and scanning electron microscopy. The first additional layer has been identified as a sodium titanate hydrogel layer and the second layer, as an apatite layer. The apatite nucleation and growth on the surface occurred after immersion in Hank’s solution. Ti-6Al-4V and Ti-13Nb-13Zr alloys exhibited higher apatite film resistance compared to CP Ti.  相似文献   

19.
Electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy fabricated by arc melting and heat treatment process was studied in 0.9% NaCl at (37±1) °C. Phase and microstructure of the fabricated alloy were investigated using X-ray diffractometer and scanning electron microscope. Mechanical properties such as yield strength and elastic modulus of the alloy were determined by tensile test. Potentiodynamic polarization technique and impedance spectroscopy were employed to study the corrosion behavior. The results of the study were compared with those obtained for Ti-6Al-4V commercial alloy. The result of the study supports feasibility of Ti-35Nb-5Ta-7Zr alloy for implant applications.  相似文献   

20.
The addition of 3%~9% Zr on the martensitic transformation of Ti-18Nb(at.%) alloy was investigated. The results of microstructure and X-ray diffraction (XRD) analysis show that the phase constitution of as-quenched Ti-18Nb-9Zr(at.%) alloy consists of the retained matrix and martensite, while that of the other three alloys is single martensite. No trace of athermal phase was found in any of the as-quenched alloys. Unlike the effect of Nb addition on the martensitic transformation start temperature Ms of Ti-1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号