首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
溶胶-凝胶法制备RDX/SiO2纳米复合含能材料   总被引:1,自引:1,他引:1  
利用溶胶-凝胶法制备RDX纳米复合含能材料的干凝胶及气凝胶。采用透射电镜(TEM)和X射线衍射(XRD)对其形貌和晶体结构进行表征,测试了其热分解性能和撞击感度。结果表明,RDX含量为45%的RDX/SiO2纳米复合含能材料气凝胶的DSC分解峰温提前了15.4℃。SiO2凝胶基体可以降低RDX的撞击感度,并且随SiO2基体含量的增大降低幅度增大。  相似文献   

2.
HMX/AP/RF纳米复合含能材料的sol-gel法制备   总被引:3,自引:0,他引:3  
首次用溶胶一凝胶(sol-gel)方法成功制备了HMX/AP/RF纳米复合含能材料.采用SEM扫描电镜、BET比表面积分析、XRD粉末衍射和DSC差示扫描量热法对复合材料的结构进行表征.结果表明:HMX/AP/RF气凝胶具有纳米网孔结构,比表面积为27.13m2/g,相比空白RF气凝胶明显下降;HMX/AP/RF气凝胶中晶体的平均晶粒度为48~93nm,HMX/AP/RF气凝胶的热分解峰较原物质HMX相比有所提前.  相似文献   

3.
Fe2O3/BAl纳米复合含能材料的制备及性能研究   总被引:1,自引:0,他引:1  
利用溶胶-凝胶法制备了Fe2O3/BAl纳米复合含能材料,用SEM、XRD、DSC等方法对Fe2O3/BAl复合含能材料的微观形貌、结构以及热力学性能进行了研究。结果表明:Fe2O3紧密包覆在B粉和纳米Al颗粒表面;与普通Fe2O3/Al铝热剂相比,溶胶-凝胶法制备的Fe2O3/BAl纳米复合含能材料具有更好的点火特性。  相似文献   

4.
采用溶胶凝胶法制备Fe2O3凝胶模板,加入黑索今(RDX)和硼(B)粉,制得RDX/B/Fe2O3复合湿凝胶,利用超临界CO2流体干燥工艺对其进行干燥,得到RDX/B/Fe2O3纳米复合含能材料。讨论了湿凝胶制备和超临界CO2流体干燥工艺中对凝胶结构和粒子大小的影响因素,获得了最佳制备工艺条件:Fe3+浓度0.20mol·L-1,n(Fe3+)∶n(C3H6O)=1∶15,超临界流体的温度40℃和压力10 MPa,干燥釜升压时CO2流入的速率15L·h-1,干燥釜平衡换气时CO2流体的流速2L·h-1。在此条件下制备得到纳米复合含能材料RDX/B/Fe2O3(质量比为90∶2∶8),利用扫描电镜,差示扫描量热分析了样品的微观形貌和热分解特性,测试了机械感度。结果表明,所得纳米含能材料粒度为30~50nm;RDX/B/Fe2O3分解放热起始温度比原料RDX提前了7℃,放热量提高了885J·g-1,机械感度H50=40.8cm。  相似文献   

5.
溶胶凝胶法制备RDX/RF纳米复合含能材料   总被引:3,自引:9,他引:3       下载免费PDF全文
以间苯二酚和甲醛为原料,Na2CO3.10H2O为催化剂,采用溶胶凝胶法,通过RDX在间苯二酚-甲醛树脂(RF)形成的纳米网格中结晶,制备了RDX/RF纳米复合含能材料。用原子力显微镜(AFM),扫描电子显微镜(SEM),X射线粉末衍射仪(XRD),BET比表面积分析仪对其结构进行了表征。结果表明,RF凝胶网格尺寸在几个纳米到几十个纳米之间,RDX/RF凝胶中的RDX晶粒大小平均为38 nm。空白RF气凝胶的比表面积达551.5 m2.g-1,炸药填充后样品比表面积为142.7 m2.g-1。与同组分的机械混合物相比,RDX/RF复合物的热分解峰提前约25℃,机械感度有所降低。  相似文献   

6.
纳米α-Al2O3对HMX撞击感度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
比较了单质炸药HMX和混合炸药HMX/纳米Al2O3落锤撞击试验,研究纳米α-Al2O3对HMX撞击感度的影响,并对纳米Al2O3在混合炸药中作用机理进行了探讨。结果表明,纳米α-Al2O3具有润滑作用,HMX/纳米Al2O3混合炸药的撞击感度随纳米α-Al2O30,添加量的增加而降低,添加2.0%(质量分数)纳米α-Al2O3混合炸药与单质炸药HMX相比,2.5kg落锤测试的50%爆炸特性落高(如)提高了13.1cm。  相似文献   

7.
为了在降低黑索今(RDX)机械感度的同时提高其热分解性能,以四甲氧基硅烷为前驱物,氟硼酸为催化剂,用溶胶-凝胶法制备了RDX-Al质量分数分别为30%、50%、70%(RDX与Al质量比均为6∶1)的三种RDX/Al/SiO_2纳米复合含能材料。用扫描电子显微镜(SEM)、能谱分析(EDS)及X-射线衍射(XRD)对其形貌及结构进行了表征;用热重分析(TG)、差示扫描量热(DSC)研究了样品的热性能;按GJB772A-1997的方法测试了样品的机械感度。结果表明:RDX/Al/SiO_2是以SiO_2为凝胶骨架,Al与RDX进入到凝胶骨架中形成的纳米复合含能材料;该复合材料中RDX的最小平均粒径为65.09 nm,且其粒径随RDX-Al含量的增加而增大;当RDX-Al的质量分数为30%时,与纯RDX相比,该复合材料中RDX的分解温度较纯RDX提前22.4℃,与原料RDX相比,样品的特性落高提高108.6 cm,爆炸百分数降低60%。  相似文献   

8.
NC/Al纳米复合含能材料的制备与表征   总被引:1,自引:0,他引:1  
晋苗苗  罗运军 《含能材料》2013,21(2):230-234
采用溶胶-凝胶法和超临界二氧化碳干燥法制备了硝化棉/铝粉(NC/Al)纳米复合材料,并通过红外光谱、比表面积、扫描电子显微镜(SEM)以及差示扫描量热(DSC)等分析方法对复合材料进行了表征。研究结果表明: 纳米铝粉与NC气凝胶骨架成功复合; 复合材料为平均孔径在20~50 nm之间的介孔材料,纳米铝粉在凝胶中均匀分散; NC/Al纳米复合材料的比表面积随铝粉添加量增加而下降; 复合材料中纳米铝粉与硝化棉质量比为5∶10时, NC组分分解热由空白NC气凝胶的1689.21 J·g-1提高至2408.07 J·g-1。   相似文献   

9.
以Al(NO3)3·9H2O、NH3·H2O、W、Cr等为原料,采用溶胶-凝胶自生粉末冶金法制备氧化铝颗粒增强钨铬双金属基复合材料,对烧结过程中增强颗粒Al2O3生成机制及对Al2O3/W-Cr复合材料的结合界面进行研究。结果表明:Al2O3体积分数为10%时洛氏硬度达到最高值,为58.7,致密度随Al2O3体积分数的增加呈下降趋势;复合材料的增强颗粒氧化铝是由溶胶-凝胶过程中生成的Al(OH)3烧结分解而得,该Al(OH)3经过1 200℃保温1 h烧结可得到增强效果最佳的α-Al2O3;该复合材料的结合方式并非简单的机械包裹,而是冶金结合。  相似文献   

10.
溶胶-凝胶法制备纳米含能复合材料的研究进展   总被引:1,自引:0,他引:1  
池钰  黄辉  李金山 《火工品》2006,(2):46-50
本文综述了溶胶-凝胶法制备纳米含能复合材料的研究进展.详细介绍了制备纳米含能复合材料的四种途径,包括含能成分复合、溶液结晶法、粉末添加法、含能骨架合成.还阐述了这些纳米含能复合材料的热分解性能、晶体结构特征、机械性能、燃烧性能和爆轰性能等主要性能以及应用前景.  相似文献   

11.
RDX/RF纳米复合含能微球的乳液溶胶-凝胶制备   总被引:1,自引:1,他引:1  
张娟  杨光成  聂福德 《含能材料》2010,18(6):643-647
采用溶胶-凝胶技术与乳化技术相结合的方法制备了RDX/RF纳米凝胶复合含能微球。凝胶纳米复合含能微球的大小主要受表面活性剂和反应温度以及时间的影响。通过扫描电镜(SEM)、比表面积仪(BET)、X射线粉末衍射仪(XRD)、差热分析仪(DTA)等研究了凝胶复合含能微球的结构性能。结果显示:RDX/RF纳米凝胶复合含能微球大小在50~200nm之间,RDX炸药粒子在RF凝胶基体的纳米孔洞中均匀结晶析出。RDX/RF凝胶复合含能微球中RDX的平均晶粒度在30~50nm之间,凝胶微球的比表面积为56.3m2/g。粒径减小后,复合材料的热分解峰提前约33℃。  相似文献   

12.
为获得高能低感复合含能材料,以奥克托今(HMX)为主体炸药,采用超临界CO2法对HMX表面进行包覆改性。通过改变系统温度、系统压力、平均升压速率、平均降压速率、溶液浓度等参数,探讨了各因素对包覆效果的影响,并对包覆后的样品进行了撞击感度测试。结果表明,当系统温度为303K、系统压力为8.5MPa、平均升压速率为3.0MPa/min、乙酸乙酯体积为20mL、平均降压速率为4.0MPa/min时,超临界CO_2法包覆HMX效果最好;包覆后样品撞击感度的特性落高H_(50)比原料HMX(H_(50)=24.2cm)提高了14.3cm。  相似文献   

13.
为降低六硝基六氮杂异戊兹烷(简称HNIW,CL-20)的机械感度,采用溶胶-凝胶法结合超临界干燥技术,制备出了平均粒径为1~2μm的超细CL-20/Cr2O3复合含能材料。用扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)对CL-20/Cr2O3复合物的形貌、粒径大小、复合方式进行了表征,并对其撞击感度、摩擦感度进行了测试。结果表明,CL-20与多孔性Cr 2 O 3气凝胶之间为物理复合,超细CL-20/Cr 2 O 3复合物撞击感度的特性落高值提高了230.2%,摩擦感度降低了30%。  相似文献   

14.
15.
纳米复合含能材料的几种液相制备方法   总被引:1,自引:1,他引:1  
综述了四种液相制备纳米复合含能材料的方法:溶胶凝胶法、喷雾法、沉淀法和冷冻干燥法,并介绍了用CO2超临界溶液的快速膨胀(RESS)工艺和用CO2超临流体代替沉淀剂的压缩流体反抽提沉淀(PCA)工艺。溶胶凝胶法主要用于制备金属氧化物为基的纳米复合含能材料;喷雾干燥法和RESS工艺主要用于制备含能材料和纳米金属颗粒组成的复合物;沉淀法适用于氧化剂/金属燃料和炸药/金属燃料两种纳米复合物的制备,PCA工艺主要用于后一种纳米复合物的制备;冷冻干燥法主要用于制备无机氧化剂和纳米金属颗粒组成的复合物;举例说明了Fe2O3/Al纳米复合物、NH4ClO4/Al纳米复合物的制备以及纳米复合含能材料的应用。  相似文献   

16.
刘燕  安崇伟  罗进  王晶禹 《含能材料》2018,26(12):1009-1013
为了改善2,4,6,8,10,12?六硝基?2,4,6,8,10,12?六氮杂异伍兹烷(CL?20)的安全性能,采用一步球磨法制备出纳米CL?20/AP含能复合粒子,并通过扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、差示扫描量热法(DSC)和撞击感度测试对其性能进行了研究。结果表明,纳米CL?20/AP含能复合粒子球形化效果明显,粒径约为300~500 nm;复合粒子的峰位置发生明显的偏移、新增和消失,推测其物相晶型可能发生变化,由于多晶样品的择优取向,复合粒子的X射线衍射峰强度明显降低;纳米CL?20/AP含能复合粒子的放热峰相比原料提前了,更容易发生热分解;撞击感度测试中,复合粒子的特性落高比CL?20增加了13.10 cm,安全性能更好。  相似文献   

17.
为提高能源材料的燃烧、能量及爆炸性能,在武器能源中引入纳米功能复合材料,对RDX-RF-NI三元体系纳米复合含能材料制备工艺进行研究.采用溶胶-凝胶法制备基于间苯二酚甲醛树脂(RF)凝胶的RDX-RF-Ni三元体系纳米复合含能材料,并进行实验验证.研究结果表明:以RF凝胶为基,同时采用水合肼(N2H4·H2O)还原溶液中的硫酸镍(NiSO4),可以制备出RDX-RF-Ni复合材料,RDX含量可以达到65%.  相似文献   

18.
硝化棉/黑索今纳米复合含能材料的制备与热性能研究   总被引:1,自引:0,他引:1  
晋苗苗  罗运军 《兵工学报》2014,35(6):822-827
采用溶胶-凝胶法制备了以硝化棉(NC)为凝胶骨架的NC/黑索今(RDX)纳米复合含能材料,并采用红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)以及热失重/差示扫描量热(TG/DSC)等测试手段对材料进行了表征。研究结果表明:RDX与NC凝胶骨架成功复合;由Scherrer公式计算复合材料中RDX的平均粒径最低可达50.16 nm,且随着RDX含量增大,其粒径随之增大,但仍在100 nm以下;复合材料中RDX的最大分解温度及差示扫描量热(DSC)放热峰温均低于原料RDX。  相似文献   

19.
针对叠氮化铜(Cu(N_3)_2)静电感度高、难以实际应用的问题,设计了一种基于硅基底的内嵌叠氮化铜碳纳米管复合含能薄膜材料。首先,采用改进的两步阳极氧化法在硅基底上制备多孔氧化铝薄膜,然后将其作为模板,先后通过化学气相沉积法和电化学沉积法在氧化铝孔道中制备内嵌铜纳米颗粒的定向碳纳米管(CNTs)阵列,最后利用气固相叠氮化反应制备得到可与微机电系统(MEMS,Micro-electro Mechanical Systems)加工工艺相兼容的硅基Cu(N_3)_2@CNTs复合含能薄膜。利用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射(XRD)等手段对材料的微观形貌、晶体结构和组成成分进行了表征,利用差示扫描量热法(DSC)对复合含能薄膜进行了热分解动力学研究,采用升降法测试了复合含能薄膜的静电感度。研究结果表明:硅基Cu(N_3)_2@CNTs复合含能薄膜的活化能约为230.00 kJ·mol-1,热爆炸临界温度约为193.18℃;复合薄膜的静电感度明显得到改善,50%的发火能量约为4.0 mJ。  相似文献   

20.
纳米含能材料Al-MoO_3的性能研究   总被引:1,自引:0,他引:1  
采用超声分散混合的方法,以纳米铝粉和纳米氧化钼为原料.制备了纳米含能材料Al-MoO_3.通过扫描电镜(SEM)和差热分析(DSC)对纳米含能材料Al-MoO_3进行了表征分析,同时进行了火焰感度、激光点火性能和电点火性能测试.结果表明:纳米含能材料Al-MoO_3是亚稳态分子间复合物的一种,它具有较好的火焰感度、激光点火感度和电点火感度,其50%感度分别为37.3cm、1.657mJ和462mA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号