首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L−1, and a real global quantity of micropollutants of 29.5 μg L−1. The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV254) alone, dark Fenton (Fe2+,3+/H2O2) and photo-Fenton (Fe2+,3+/H2O2/light). Different irradiation sources were used for the photo-Fenton experiences: UV254 and simulated sunlight. Iron and H2O2 concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV254, 50 mg L−1 of H2O2, with and without adding iron (5 mg L−1 of Fe2+ added or 1.48 mg L−1 of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H2O2 concentration increased (10, 25 and 50 mg L−1), best degradations were observed. UV254, Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal.The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.  相似文献   

2.
Zhou T  Lim TT  Wu X 《Water research》2011,45(9):2915-2924
The sonophotolytic advance oxidation system (US/UV/Fe3+) could achieve synergistic degradation of reactive black 5 (RB5), as compared to UV/Fe3+ and US/Fe3+ systems. A synergy factor of 2.5 based on the pseudo-first-order degradation rate constant (kobs) was found, along with enhancements in organic detoxification and mineralization. The presence of organic ligands could affect the US/UV/Fe3+ system differently. Oxalate, citrate, tartrate and succinate could enhance the RB5 degradation, while NTA and EDTA exhibited strong inhibitions. The influence of these ligands on kobs(RB5) in the US/UV/Fe(III)-ligand systems followed the sequence of oxalate > tartrate > succinate > citrate > without ligand > NTA > EDTA, while they could be degraded simultaneously with the kobs(ligand) order of oxalate > citrate > tartrate > succinate > NTA > EDTA. Monitoring of iron species and the generated H2O2 and •OH revealed that the ligands in the US/UV/Fe(III)-ligand system could play different mechanistic roles: (1) promoting H2O2 production, (2) accelerating Fenton reaction, and (3) competing with RB5 for reacting with •OH. Among the ligands, oxalate exhibited the most significant enhancement of RB5 oxidation in the sonophotolytic system, and the process was pH-dependent. An initial reaction lag in RB5 degradation was observed when Fe2+ was used in lieu of Fe3+ as the catalyst in the sonophotolytic system.  相似文献   

3.
Jo CH  Dietrich AM  Tanko JM 《Water research》2011,45(8):2507-2516
Advanced treatment technologies that control multiple contaminants are beneficial to drinking water treatment. This research applied UV/H2O2 for the simultaneous degradation of geosmin, 2-methylisoborneol, four trihalomethanes and six haloacetic acids. Experiments were conducted in de-ionized water at 24 ± 1.0 °C with ng/L amounts of odorants and μg/L amounts of disinfection byproducts. UV was applied with and without 6 mg/L H2O2. The results demonstrated that brominated trihalomethanes and brominated haloacetic acids were degraded to a greater extent than geosmin and 2-methylisoborneol. Tribromomethane and dibromochloromethane were degraded by 99% and 80% respectively at the UV dose of 1200 mJ/cm2 with 6 mg/L H2O2, whereas 90% of the geosmin and 60% of the 2-methylisoborneol were removed. Tribromoacetic acid and dibromoacetic acid were degraded by 99% and 80% respectively under the same conditions. Concentrations of trichloromethane and chlorinated haloacetic acids were not substantially reduced under these conditions and were not effectively removed at doses designed to remove geosmin and 2-methylisoborneol. Brominated compounds were degraded primarily by direct photolysis and cleavage of the C-Br bond with pseudo first order rate constants ranging from 10−3 to 10−2 s−1. Geosmin and 2-methylisoborneol were primarily degraded by reaction with hydroxyl radical with direct photolysis as a minor factor. Perchlorinated disinfection byproducts were degraded by reaction with hydroxyl radicals. These results indicate that the UV/H2O2 can be applied to effectively control both odorants and brominated disinfection byproducts.  相似文献   

4.
Hyun-Seok Son 《Water research》2009,43(5):1457-464
In this study, the degradation mechanism of 1,4-dioxane using zero-valent iron (Fe0) in the presence of UV light was investigated kinetically. The degradation of 1,4-dioxane in Fe0-only, photolysis, and combined Fe0 and UV reactions followed the kinetics of a pseudo-first-order model. The degradation rate constant (19 × 10−4 min−1) in the combined reaction with UV-C (4.2 mW cm−2) and Fe0 (5 mg L−1) was significantly enhanced compared to Fe0-only (4.8 × 10−4 min−1) and photolytic reactions (2.25 × 10−4 min−1), respectively. The removal efficiency of 1,4-dioxane in combined reaction with Fe0 and UV within 4 h was enhanced by increasing UV intensity at UV-C region (34% at 4.2 mW cm−2 and 89% at 16.9 mW cm−2) comparing with the removal in the combined reaction with Fe0 and UV-A (29% at 2.1 mW cm−2, and 33% at 12.6 mW cm−2). It indicates that 1,4-dioxane was degraded mostly by OH radicals in the combined reaction. The degradation patterns in both Fe0-only and combined reactions were well fitted to the Langmuir-Hinshelwood model, implying that adsorption as well as the chemical reaction occurred. The transformation of Fe0 to Fe2+ and Fe3+ was observed in the Fe0-only and combined reactions, and the transformation rate of Fe0 was improved by UV irradiation. Furthermore, the reduction of Fe3+ was identified in the combined reaction, and the reduction rate was enhanced by an increase of UV energy. Our study demonstrated that the enhancement of 1,4-dioxane removal rate occurred via an increased supply of OH radicals from the Fenton-like reaction induced by the photolysis of Fe0 and H2O, and with producing less sludge.  相似文献   

5.
The kinetics of photodegradation of the pesticide metaldehyde by UV/H2O2 and UV/TiO2 in laboratory grade water and a natural surface water were studied. Experiments were carried out in a bench scale collimated beam device using UVC radiation. Metaldehyde was efficiently degraded by both processes in laboratory grade water at identical rates of degradation (0.0070 and 0.0067 cm2 mJ−1 for UV/TiO2 and UV/H2O2 respectively) when optimised doses were used. The ratio between oxidant and metaldehyde was significantly higher for H2O2 due to its low photon absorption efficiency at 254 nm. However, the presence of background organic compounds in natural water severely affected the rate of degradation, and whilst the pseudo first-order rate constant of degradation by UV/H2O2 was slowed down (0.0020 cm2 mJ−1), the degradation was completely inhibited for the UV/TiO2 process (k′ = 0.00007 cm2 mJ−1) due to the blockage of active sites on TiO2 surface by the background organic material.  相似文献   

6.
I. Michael 《Water research》2010,44(18):5450-5462
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe2+/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe2+ and H2O2 were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe2+ and H2O2 concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO2 process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment.  相似文献   

7.
This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L−1) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe2+]0 = 5 mg L−1; [H2O2]0 = 75 mg L−1) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m3 day−1 of secondary wastewater effluent was found to be 0.85 € m−3.  相似文献   

8.
A solar photo-Fenton process combined with a biological nitrification and denitrification system is proposed for the decontamination of a landfill leachate in a pilot plant using photocatalytic (4.16 m2 of Compound Parabolic Collectors - CPCs) and biological systems (immobilized biomass reactor). The optimum iron concentration for the photo-Fenton reaction of the leachate is 60 mg Fe2+ L−1. The organic carbon degradation follows a first-order reaction kinetics (k = 0.020 L kJUV−1, r0 = 12.5 mg kJUV−1) with a H2O2 consumption rate of 3.0 mmol H2O2 kJUV−1. Complete removal of ammonium, nitrates and nitrites of the photo-pre-treated leachate was achieved by biological denitrification and nitrification, after previous neutralization/sedimentation of iron sludge (40 mL of iron sludge per liter of photo-treated leachate after 3 h of sedimentation). The optimum C/N ratio obtained for the denitrification reaction was 2.8 mg CH3OH per mg N-NO3, consuming 7.9 g/8.2 mL of commercial methanol per liter of leachate. The maximum nitrification rate obtained was 68 mg N-NH4+ per day, consuming 33 mmol (1.3 g) of NaOH per liter during nitrification and 27.5 mmol of H2SO4 per liter during denitrification. The optimal phototreatment energy estimated to reach a biodegradable effluent, considering Zahn-Wellens, respirometry and biological oxidation tests, at pilot plant scale, is 29.2 kJUV L−1 (3.3 h of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 90 mM of H2O2 when used in excess, which means almost 57% mineralization of the leachate, 57% reduction of polyphenols concentration and 86% reduction of aromatic content.  相似文献   

9.
Phenol is a common wastewater contaminant from various industrial processes, including petrochemical refineries and chemical compounds production. Due to its toxicity to microbial activity, it can affect the efficiency of biological wastewater treatment processes. In this study, the efficiency of an Anaerobic Sequencing Batch Reactor (ASBR) fed with increasing phenol concentrations (from 120 to 1200 mg L−1) was assessed and the relationship between phenol degradation capacity and the microbial community structure was evaluated. Up to a feeding concentration of 800 mg L−1, the initial degradation rate steadily increased with phenol concentration (up to 180 mg L−1 d−1) and the elimination capacity remained relatively constant around 27 mg phenol removed?gVSS−1 d−1. Operation at higher concentrations (1200 mg L−1) resulted in a still efficient but slower process: the elimination capacity and the initial degradation rate decreased to, respectively, 11 mg phenol removed?gVSS−1 d−1 and 154 mg L−1 d−1. As revealed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, the increase of phenol concentration induced level-dependent structural modifications of the community composition which suggest an adaptation process. The increase of phenol concentration from 120 to 800 mg L−1 had little effect on the community structure, while it involved drastic structural changes when increasing from 800 to 1200 mg L−1, including a strong community structure shift, suggesting the specialization of the community through the emergence and selection of most adapted phylotypes. The thresholds of structural and functional disturbances were similar, suggesting the correlation of degradation performance and community structure. The Canonical Correspondence Analysis (CCA) confirmed that the ASBR functional performance was essentially driven by specific community traits. Under the highest feeding concentration, the most abundant ribotype probably involved in successful phenol degradation at 1200 mg L−1 was affiliated to the Anaerolineaceae family.  相似文献   

10.
The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L1 and a rejected flux highly concentrated (in the range of 16–25 mg L1 and 18–32 mg L1 of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L1 of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants.  相似文献   

11.
Degradation of the emerging contaminant ibuprofen in water by photo-Fenton   总被引:3,自引:0,他引:3  
In this study the degradation of the worldwide Non-Steroidal Anti-Inflammatory Drug (NSAID) ibuprofen (IBP) by photo-Fenton reaction by use of solar artificial irradiation was carried out. Non-photocatalytic experiments (complex formation, photolysis and UV/Vis-H2O2 oxidation) were executed to evaluate the isolated effects and additional differentiated degradation pathways of IBP. The solar photolysis cleavage of H2O2 generates hydroxylated-IBP byproducts without mineralization. Fenton reaction, however promotes hydroxylation with a 10% contamination in form of a mineralization. In contrast photo-Fenton in addition promotes the decarboxylation of IBP and its total depletion is observed. In absence of H2O2 a decrease of IBP was observed in the Fe(II)/UV-Vis process due to the complex formation between iron and the IBP-carboxylic moiety. The degradation pathway can be described as an interconnected and successive principal decarboxylation and hydroxylation steps. TOC depletion of 40% was observed in photo-Fenton degradation. The iron-IBP binding was the key-point of the decarboxylation pathway. Both decarboxylation and hydroxylation mechanisms, as individual or parallel process are responsible for IBP removal in Fenton and photo-Fenton systems. An increase in the biodegradability of the final effluent after photo-Fenton treatment was observed. Final BOD5 of 25 mg L−1 was reached in contrast to the initial BOD5 shown by the untreated IBP solution (BOD5 < 1 mg L−1). The increase in the biodegradability of the photo-Fenton degradation byproducts opens the possibility for a complete remediation with a final post-biological treatment.  相似文献   

12.
An integrated treatment method based on magnesium salt extraction followed by chemical oxidation was used for the treatment of a veterinary antibiotic, oxytetracycline (OTC) contaminated cow manure since animal manure can be an important source for antibiotic pollution in the environment. Pretreatment with magnesium salt enhanced the efficiencies of subsequent oxidation processes by extracting 63.9% of OTC from the manure thereby making it more favorable for oxidation with the hydroxyl radicals produced by the Fenton and ozone oxidation processes. Both the 24 h Fenton oxidation process with 434 mM H2O2 and 43.4 mM Fe2+ doses and the 1-h ozonation process with an applied ozone dose of 2.5 mg min− 1 provided more than 90% OTC removal from the manure slurry. However, the second-order OTC removal rate constant of Fenton process (119 M− 1s− 1) was remarkably lower than that obtained with the ozonation process (548 M− 1s− 1). The oxidant dose was a significant factor for the efficiency of the Fenton treatment but not for the ozone treatment. The efficiencies of both the Fenton and ozone oxidation processes were not affected by the pH adjustment of the manure slurry.  相似文献   

13.
Dao YH  De Laat J 《Water research》2011,45(11):3309-3317
The relative rates of degradation of three hydroxyl radical probe compounds (atrazine, fenuron and parachlorobenzoic acid (pCBA)) by FeIII/H2O2 (pH = 2.85), FeIIINTA/H2O2 (neutral pH), FeII/O2, FeIINTA/O2, FeII/H2O2 and FeIINTA/H2O2 (neutral pH) have been investigated using the competitive kinetic method. Experiments were carried out in batch and in semi-batch reactors, in the dark, at 25 °C. The data showed that the three probe compounds could be degraded by all the systems studied, and in particular by FeIINTA/H2O2 and FeIIINTA/H2O2 at neutral pH. The relative rate constants of degradation of the three probe compounds obtained for all the systems tested were identical and equal to 1.45 ± 0.03 and 0.47 ± 0.02 for kAtrazine/kpCBA and kFenuron/kpCBA, respectively. These values as well as the decrease of the rates of degradation of the probe compounds upon the addition of hydroxyl radical scavengers (tert-butanol, bicarbonate ions) suggest that the degradation of atrazine, fenuron and pCBA by FeIINTA/O2, FeIINTA/H2O2 and FeIIINTA/H2O2 is initiated by hydroxyl radicals.  相似文献   

14.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

15.
The degradation of two pesticides, bromoxynil and trifluralin, was investigated in ultrapure and natural water solutions under ultraviolet (UV) light and a combination of UV and hydrogen peroxide (H2O2). The effect of pH on the photooxidation of the pesticides was also studied. The results indicated that under direct photolysis with monochromatic light at 253.7 nm and different conditions, the photochemical rates followed first-order kinetics, with fluence-based rate constants ranging from 9.15 × 10−4 to 6.37 × 10−3 cm2 mJ−1 and 7.63 × 10−3 to 1.47 × 10−2 cm2 mJ−1 for bromoxynil and trifluralin, respectively. Quantum yields, in the range of 0.08-0.25 for bromoxynil and 0.12-0.72 for trifluralin, were observed in experiments using ultrapure water. The study also found that the UV/H2O2 process enhanced the oxidation rate in comparison to direct photolysis. A 90% degradation with UV dose of 333 and 188 mJ cm−2 was achieved for bromoxynil and trifluralin, respectively, in natural water, in presence of 8.8 × 10−4 M H2O2. To assess the aquatic toxicity, the Microtox® 81.9% screening test protocol was used before and after treatment. The test results indicated a decrease in the acute toxicity of the samples after treatment for both pesticides.  相似文献   

16.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

17.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins.  相似文献   

18.
Flow-through reactors with manganese oxides were examined for their capacity to remove 17α-ethinylestradiol (EE2) at μg L−1 and ng L−1 range from synthetic wastewater treatment plant (WWTP) effluent. The mineral MnO2 reactors removed 93% at a volumetric loading rate (BV) of 5 μg EE2 L−1 d−1 and from a BV of 40 μg EE2 L−1 d−1 on, these reactors showed 75% EE2 removal. With the biologically produced manganese oxides, only 57% EE2 was removed at 40 μg EE2 L−1 d−1. EE2 removal in the ng L−1 range was 84%. The ammonium present in the influent (10 mg N L−1) was nitrified and ammonia-oxidizing bacteria (AOB) were found to be of prime importance for the degradation of EE2. Remarkably, EE2 removal by AOB continued for a period of 4 months after depleting NH4+ in the influent. EE2 removal by manganese-oxidizing bacteria was inhibited by NH4+. These results indicate that the metabolic properties of nitrifiers can be employed to polish water containing EE2 based estrogenic activity.  相似文献   

19.
Tokumura M  Znad HT  Kawase Y 《Water research》2008,42(18):4665-4673
The decolorization of dark brown colored coffee effluent by solar photo-Fenton process has been studied. Effects of accumulated solar light energy and dosage of Fenton reagents (iron and hydrogen peroxide) on the color removal have been examined. With increasing Fe dosage the rate of the decolorization increased but the enhancement was not pronounced beyond 10 mg L−1. Although addition of H2O2 increased the decolorization rate up to around 1000 mg L−1 of H2O2, further addition of H2O2 could not enhance the color removal. At excess dosages of Fenton reagents, the color removal was not improved due to their scavenging of hydroxyl radicals. It was found that the pseudo-first order decolorization kinetic constant based on the accumulated solar energy is a sole parameter unifying solar photo-Fenton decolorization processes under the different weather conditions. The kinetic constant can be readily used to calculate the amount of solar energy required to achieve a certain degree of color removal. The mineralization was rather slower as compared with the decolorization. The decolorization capability with solar irradiation was found to be comparable to UV light irradiation. The present results suggest that abundant solar energy driving decolorization of coffee effluent by photo-Fenton reaction is highly efficient.  相似文献   

20.
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O3 g−1 dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (kP,O3 > 104 M−1 s−1), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O3 g−1 DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (kP,O3 < 104 M−1 s−1) were only fully eliminated for higher ozone doses.The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference.An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O3 g−1 DOC was 7.5 μg L−1, which is below the drinking water standard of 10 μg L−1. N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L−1 was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L−1, with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号