共查询到20条相似文献,搜索用时 10 毫秒
1.
现有的基于Word2vec的网络表示学习(NRL)算法使用随机游走(RW)来生成节点序列,针对随机游走倾向于选择具有较大度的节点,生成的节点序列不能很好地反映网络结构信息,从而影响表示学习性能的问题,提出了基于改进随机游走的网络表示学习算法。首先,使用RLP-MHRW算法生成节点序列,它在生成节点序列时不会偏向大度节点,得到的节点序列能更好地反映网络结构信息;然后,将节点序列投入到Skip-gram模型得到节点表示向量;最后,利用链路预测任务来测度表示学习性能。在4个真实网络数据集上进行了实验。在论文合作网络arXiv ASTRO-PH上与LINE和node2vec算法相比,链路预测的AUC值分别提升了8.9%和3.5%,其他数据集上也均有提升。实验结果表明,RLP-MHRW能有效提高基于Word2vec的网络表示学习算法的性能。 相似文献
2.
针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式--加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵。在谱映射过程中,采用Nystrom逼近策略近似估计相似性矩阵及其特征向量,大大减少了求解相似性矩阵的运算复杂度,降低了内存消耗。对得到的低维向量子空间采用一种新型的聚类算法--近邻传播聚类算法进行聚类,避免了传统谱聚类采用K-means算法对初始值敏感,易陷入局部最优的缺陷。实验表明该算法获得了比传统谱聚类算法更好的分割效果。 相似文献
3.
Li Xiang Wang Zhijian Hu Ronglin Zhu Quanyin Wang Liuyang 《Pattern Analysis & Applications》2019,22(2):633-647
Pattern Analysis and Applications - Collaborative filtering (CF) recommendation has made great success in solving information overload. However, CF has some disadvantages such as cold start, data... 相似文献
4.
针对传统谱聚类算法在路网划分时承载路网信息较少和聚类中心优化问题,提出一种基于改进谱聚类算法的城市路网划分算法.通过转移概率模拟交通路网动态运行特征,利用马尔可夫链对谱聚类相似图进行重构,增强相似图的健壮性,与遗传算法结合,通过遗传算法优化初始聚类中心,提高谱聚类全局寻优能力.实验结果表明,改进后的算法比基准算法具有较... 相似文献
5.
6.
Mundur等提出了一种基于Delaunay三角网的聚类算法,并将其应用于视频帧的多维特征数据的聚类以生成视频摘要,取得了较好的效果。但是,该算法计算量太大,导致效率不高。为提高该算法的效率,以适合于对大数据集的处理,提出了一种改进的基于Delaunay三角网的聚类算法。通过在典型数据集上的实验,提出了一种新的确定全局聚类阈值的方法,使得计算量大为减少。实验结果表明,该算法无需用户提供聚类参数,也能得到良好的聚类结果,因此能够实现聚类过程自动化;并且计算速度更快,效率更高,适合于大数据集的处理。 相似文献
7.
谱聚类算法中如何定义一个合适的尺度参数仍待学习。针对谱聚类算法中由高斯核函数建立的相似度矩阵对尺度参数敏感的问题,提出了一个新的基于加权密度的自适应谱聚类算法——WDSC。该算法将数据点的加权K近邻距离作为尺度参数,尺度参数的倒数作为数据点所在邻域的密度,引入新的密度差调整相似度矩阵;考虑了每个数据点的邻域分布,故对噪声有一定的鲁棒性,且对参数也不再敏感。在不同数据集上的实验以及对比实验均验证了该算法的有效性与鲁棒性。 相似文献
8.
传统的谱聚类算法对初始化敏感,针对这个缺陷,引入Canopy算法对样本进行“粗”聚类得到初始聚类中心点,将结果作为K-Means算法的输入,提出了一种基于Canopy和谱聚类融合的聚类算法(Canopy-SC),减少了传统谱聚类算法选择初始中心点的盲目性,并将其用于人脸图像聚类。与传统的谱聚类算法相比,Canopy-SC算法能够得到较好的聚类中心和聚类结果,同时具有更高的聚类精确度。实验结果表明了该算法的有效性和可行性。 相似文献
9.
离群点检测算法在网络入侵检测、医疗辅助诊断等领域具有十分广泛的应用。针对LDOF、CBOF及LOF算法在大规模数据集和高维数据集的检测过程中存在的执行时间长及检测率较低的问题,提出了基于图上随机游走(BGRW)的离群点检测算法。首先初始化迭代次数、阻尼因子以及数据集中每个对象的离群值;其次根据对象之间的欧氏距离推导出漫步者在各对象之间的转移概率;然后通过迭代计算得到数据集中每个对象的离群值;最后将数据集中离群值最高的对象判定为离群点并输出。在UCI真实数据集与复杂分布的合成数据集上进行实验,将BGRW算法与LDOF、CBOF和LOF算法在执行时间、检测率和误报率指标上进行对比。实验结果表明,BGRW算法能够有效降低执行时间并在检测率及误报率指标上优于对比算法。 相似文献
10.
社区发现是挖掘社交网络隐藏信息的一个有用的工具,而标签传播算法(LPA)是社区发现算法中的一种常见算法,不需要任何的先验知识,且运行速度快。针对标签传播算法有很强的随机性而导致的社区发现算法结果不稳定的问题,提出了一种基于随机游走的改进标签传播算法(LPARW)。首先,根据在网络上进行随机游走确定了节点重要性的排序,从而得到节点的更新顺序;然后,遍历节点的更新序列,对每个节点将其与排序在其之前的节点进行相似性计算,若该节点与排序在其之前的节点是邻居节点且它们之间的相似性大于阈值,则将排序在其之前的节点选为种子节点;最后,将种子节点的标签传播给其余的节点,得到社区的最终划分结果。将所提算法与一些经典的标签传播算法在4个有标签的网络和5个无标签的真实网络上进行比较分析,实验结果表明所提算法在标准互信息(NMI)、调整兰德系数(ARI)和模块度等经典的评价指标上的性能均优于其余对比算法,可见该算法具有很好的社区划分效果。 相似文献
11.
社区发现是挖掘社交网络隐藏信息的一个有用的工具,而标签传播算法(LPA)是社区发现算法中的一种常见算法,不需要任何的先验知识,且运行速度快。针对标签传播算法有很强的随机性而导致的社区发现算法结果不稳定的问题,提出了一种基于随机游走的改进标签传播算法(LPARW)。首先,根据在网络上进行随机游走确定了节点重要性的排序,从而得到节点的更新顺序;然后,遍历节点的更新序列,对每个节点将其与排序在其之前的节点进行相似性计算,若该节点与排序在其之前的节点是邻居节点且它们之间的相似性大于阈值,则将排序在其之前的节点选为种子节点;最后,将种子节点的标签传播给其余的节点,得到社区的最终划分结果。将所提算法与一些经典的标签传播算法在4个有标签的网络和5个无标签的真实网络上进行比较分析,实验结果表明所提算法在标准互信息(NMI)、调整兰德系数(ARI)和模块度等经典的评价指标上的性能均优于其余对比算法,可见该算法具有很好的社区划分效果。 相似文献
12.
13.
Multimedia Tools and Applications - The Finite Gaussian Mixture Model (FGMM) is the most commonly used model for describing mixed density distribution in cluster analysis. An important feature of... 相似文献
14.
针对k-means算法过度依赖初始聚类中心、收敛速度慢等局限性及其在处理海量数据时存在的内存不足问题,提出一种新的针对大数据集的混合聚类算法super-k-means,将改进的基于超网络的高维数据聚类算法与k-means相结合,并经过MapReduce并行化后部署在Hadoop集群上运行。实验表明,该算法不仅在收敛性以及聚类精度两方面得到优化,其加速比和扩展性也有了大幅度的改善。 相似文献
15.
针对无线传感器网络非均匀成簇路由中频繁的簇头轮换带来的簇内以及簇间广播开销对传感器网络生存周期的缩短,提出了一种基于簇头分级的改进的非均匀成簇算法(CHCI),利用簇内节点能量构建了节点的分级模型,将节点分为主要簇头(PCH),次要簇头(SCH)及簇内成员节点(CM),为PCH设置了重选因子。结合二次规划问题为SCH选择了最佳中继路径降低节点能耗,延长PCH的重选时间。仿真结果表明,CHCI算法比经典LEACH算法以及非均匀成簇的EEUC算法,延长了网络的生存时间。 相似文献
16.
针对传统聚类算法聚类质量不够理想、自适应性不强和易陷入局部极小值等缺陷,提出一种基于改进免疫算法的数据聚类算法,该算法通过引入生物免疫系统中的精英保留策略和期望繁殖率,使适应度高的个体得到保留,浓度高的个体得到抑制,提高了算法的自适应性和精度,在后期通过利用混沌优化方法,使算法的局部搜索能力得到增强。实验结果表明,该算法比传统的聚类算法具有更好的性能。 相似文献
17.
18.
传统谱聚类对初值选取十分敏感,严重影响了聚类效果。为了解决初值敏感问题,提出了基于CMT-FCM(借鉴历史知识的类中心距离极大化聚类算法)的自适应谱聚类算法。该算法以样本空间的标准差作为尺度参数,实现了尺度参数的自适应选取,提高了算法效率;而通过借鉴历史知识,引入类中心距离极大化项,避免了干扰点对类中心的干扰,提高了算法鲁棒性。通过在模拟数据集以及真实数据集上测验,取得了比传统谱聚类更稳定的聚类效果,验证了算法的有效性。 相似文献
19.
交互式图像分割通过先验信息指导获取图像中人们感兴趣的部分,但是现有算法无法在效率和精度上实现平衡。为了解决此问题,提出了一种基于超像素和随机游走的快速交互式分割算法(random walk on superpixel, SPRW)。首先,将图像预分割为具有局部相似性的超像素区域,使用像素颜色均值对超像素区域表示;其次,根据人工标记的先验信息建立F-B图结构,扩展随机游走的范围,并使用随机游走的方法求解,获得硬分割结果;最后,针对分割结果的边界不光滑问题,提出改进的抠图算法(fast robust matting, FRB)进行二次处理,得到软分割结果。在BSD500和MSRC数据集上的实验证实,所提出的硬分割方法与其他算法在时间和平均交并比等指标上有较大优势;在Alpha Matting数据集上的实验充分证实所提出的软算法在提高效率的同时精度也有一定的提升;此外,在生活照更换背景的实验上展现了该算法的应用价值。 相似文献
20.
针对基于降维技术改进的多目标A*(NAMOAdr*)算法中存在的高原搜索现象,结合蒙特卡罗随机游走策略提出了一种基于随机游走的多目标A*(RWNAMOAdr*)算法,其基本思想是当NAMOAdr*算法陷入高原搜索时,利用随机游走策略及时找到一个出口(具有被上次扩展标签的启发值非支配的启发值的标签)逃离该高原搜索。针对NAMOAdr*算法何时陷入高原搜索的问题,提出了一种检测高原搜索的方法,即当连续扩展m次标签的启发值都被上一次扩展的标签的启发值支配时则认为NAMOAdr*算法陷入了高原搜索。使用多目标搜索算法的标准测试平台——随机网格进行了实验。实验结果表明RWNAMOAdr*算法比NAMOAdr*算法的运行时间平均减少了50.69%,占用的空间平均减少了约10%,能够为现实生活中加速多目标路径搜索提供理论支撑。 相似文献