首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Schedule delay is a common construction dispute. For analyzing schedule delays, a previous study had proposed an academic analysis method, the “isolated collapsed but-for” (ICBF) method. However, because many construction projects involve numerous complex activities, the procedure of using the ICBF method for schedule delay analysis is time-consuming. Therefore, this study used Microsoft Visual Basic for Applications (VBA) language and spreadsheet techniques to develop an Excel-based program for rapid delay analysis rather than manual calculation. A case study confirmed that the program automatically produces analytical results with only common delay documents (as-planned and as-built schedules and identified delay events). Compared with previous studies, schedule analysts can obtain analysis results quickly and correctly. Research results provide not only a convenient tool for schedule delay analysis but also a guide to computerize various academic delay analysis methods in the future.  相似文献   

2.
Schedule delays are common in construction projects. Although many methods have been developed for analyzing and measuring schedule delays for construction projects, each method has functional limitations and use prerequisites. No one method is acceptable for all project participants under all circumstances. This study presents the isolated collapsed but-for (ICBF) method, an innovative delay analysis method for construction projects. During analysis, the ICBF method requires as-planned and as-built schedules as well as identified liability documents with key delay events to perform its analysis approach. Based on its application to an illustrative case and comparisons with other methods, the ICBF method is effective for delay analysis. Results provided by the proposed method can be easily traced to the actual case in an as-built schedule.  相似文献   

3.
Assessing the impact of delay and resolving disputes are contentious issues since courts and administrative boards do not specify standard delay analysis practices. First, the advantages and disadvantages of widely used delay analysis methods, including the as-planned versus as-built, impact as-planned, collapsed as-built, time impact, and productivity analysis methods are summarized. Fifty-eight claim cases associated with time-based disputes in government work during the 1992–2005 period are extracted and analyzed to observe issues in time-based claims, including the reasons why they occur and the common practices in their resolution. The effects of various factors on the selection of a delay analysis method are examined. These factors include the type of schedule used, the schedule updating practice, the use of existing versus newly created schedules, and the availability of expertise, information, time, and funds. A project management system that makes use of regularly updated network schedules, and that maintains adequate project records should allow a scheduling expert to select a delay analysis method that would make a claim quite convincing.  相似文献   

4.
This article evaluates the viability of using fuzzy mathematical models for determining construction schedules and for evaluating the contingencies created by schedule compression and delays due to unforeseen material shortages. Networks were analyzed using three methods: manual critical path method scheduling calculations, Primavera Project Management software (P5), and mathematical models using the Optimization Programming Language software. Fuzzy mathematical models that allow the multiobjective optimization of project schedules considering constraints such as time, cost, and unexpected materials shortages were used to verify commonly used methodologies for finding the minimum completion time for projects. The research also used a heuristic procedure for material allocation and sensitivity analysis to test five cases of material shortage, which increase the cost of construction and delay the completion time of projects. From the results obtained during the research investigation, it was determined that it is not just whether there is a shortage of a material but rather the way materials are allocated to different activities that affect project durations. It is important to give higher priority to activities that have minimum float values, instead of merely allocating materials to activities that are immediately ready to start.  相似文献   

5.
Resequencing construction activities is a critical task for project planners for effective project control. Resequencing activities require planners to determine the impact or “role” an activity has on successor activities. They also need to determine the status of activities, i.e., which activities may or may not be delayed. Distinguishing the role and status of activities in turn requires planners to understand the rationale for activity sequences. The current critical path method (CPM) framework, however, represents sequencing rationale using precedence relationships and distinguishes activities only with respect to their time-criticality. Thus, planners find it difficult to keep track of individual sequencing logic, and manually inferring the role and status of activities becomes practically prohibitive in complex project schedules. The research presented in this paper addressed this limitation of the CPM framework by formalizing a constraint ontology and classification mechanism. The ontology allows planners to describe their rationale for activity sequences in a consistent and intuitive way, whereas the classification mechanism leverages the ontology to automatically infer the role and status of activities. The ontology and mechanisms were implemented in a prototype tool. With this tool, users can quickly verify which activities to delay to expedite critical milestone or bottleneck activities, thus making it possible to quickly evaluate and generate sequencing alternatives in CPM-based schedules.  相似文献   

6.
Windows delay analysis has been recognized as one of the most credible techniques for analyzing construction delays. To overcome some of the drawbacks of windows delay analysis, this paper introduces improvements to a computerized schedule analysis model so that it will produce accurate and repeatable results. The model considers multiple baseline updates due to changes in the durations of the activities and the logical relationships among them, as well as the impact of resource overallocation. The model uses a daily window size in order to consider all fluctuations in the critical path(s) and uses a legible representation of progress information to accurately apportion delays and accelerations among project parties. A simple case study has been implemented to demonstrate the accuracy and usefulness of the proposed delay analysis model. This research is useful for both researchers and practitioners and allows detailed and repeatable analysis of the progress of a construction project in order to facilitate corrective actions and claim analysis.  相似文献   

7.
This paper presents a fuzzy logic model that integrates daily site reporting of activity progress and delays, with a schedule updating and forecasting system for construction project monitoring and control. The model developed assists in the analysis of the effects of delays on a project’s completion date and consists of several components: An as-built database integrated with project scheduling; a list of potential causes for delays; a procedure to categorize delays; a method of estimating delay durations utilizing fuzzy logic; a procedure that updates the schedule; and, a procedure that evaluates the effects and likely consequences of delays on activity progress. This model is of relevance to researchers since it makes a contribution in project scheduling by developing a complete approach for handling the uncertainty inherent in schedule updating and activity delay analysis. It also advances the application of fuzzy logic in construction. It is of relevance to construction industry practitioners since it provides them with a useful technique for incorporating as-built data into the schedule, assessing the impact of delays on the schedule, and updating the schedule to reflect the consequences of delays and corrective actions taken. The use of fuzzy logic in the model allows linguistic and subjective assessments to be made, and thereby suits the actual practices commonly used in industry.  相似文献   

8.
Quantifying and minimizing the risks associated with delays in the construction industry are the main challenges for all parties involved. Float loss impact in noncritical activities is one of the complicated delays to assess on a project’s duration and cost. This is due to the fact that the deterministic critical path method cannot cope with such delays unless they exceed the total float values. Further, stochastic analysis, which is used in this research to assess the impact of such delays, is perceived by many planners to be complicated and time consuming. This paper presents a method to control the risks associated with float loss in construction projects. The method uses a recently developed multiple simulation analysis technique that combines the results of cost range estimates and stochastic scheduling, using Monte Carlo simulation. The proposed method quantifies the float loss impact on project duration and cost. Least-squares nonlinear regression is used to convert the stochastic results into a polynomial function that quantifies the float loss impact by relating directly the float loss value to project duration and cost at a specified confidence level.  相似文献   

9.
This study evaluates the resource-constrained critical path method (RCPM), which the writers have recently proposed. RCPM establishes a critical path method (CPM)-like, resource-constrained schedule by resource-dependent activity relationships (or resource links) that the five-step RCPM technique identifies. With its CPM-like feature, RCPM provides the critical path and float data that are not available in traditional resource-constrained scheduling techniques. In addition, RCPM provides more flexibility to the schedule through identified alternative schedules, which allow certain activities to be executed beyond their late finish times without delaying the project completion. This paper evaluates the RCPM’s performance by comparing it with five related previous studies. A brief review of each study is also included in this paper. This comparison shows that RCPM performs well in identifying resource links and alternative schedules, compared to other methods. This study is of interest to academics because it highlights the advantages and disadvantages of different algorithms that have attempted to overcome present problems in traditional resource-constrained scheduling techniques.  相似文献   

10.
Project delays due to late availabilities of resource and information (RI) prerequisites are one of the major threats to construction management. It is desirable to avoid such delays through better means of constraint management. With most contemporary planning methodologies and tools, it is generally difficult to represent many hidden flow constraints in a construction work plan. However, evaluating the impact of flow constraints is crucial in determining their criticalities, based on which the flow constraints may be prioritized and consequently resolved to minimize project delays. Due to the fact that limited resources are often shared among various trades, it may not be practical to resolve all the constraints simultaneously so that a tradeoff is inevitable, which suggests that management should focus on the most important ones termed as key constraints (i.e., those directly contributing to project delays). This paper presents a methodology that augments the traditional critical path method with RI availability constraints to analyze the causes of delays and locate the key constraints binding on project completion without ambiguity based on the principles of the theory of constraints. The methodology of key constraint analysis has been implemented with the integrated production scheduler, a constraint-based scheduling tool which facilitates the modeling, analysis, and management of constraints at the production planning level. An illustrative example is depicted to demonstrate how the proposed methodology works.  相似文献   

11.
Delayed completion of a construction project is often caused by a complex interaction of a combination of events, some of which are the contractor’s risks and others are the project owner’s. The apportionment of the liability to give effect to the risk allocation has therefore been a matter of great controversy. Many delay analysis methodologies have been developed over the years for performing this task. This paper reports on an empirical study into the current practice in the use of these methodologies in the United Kingdom, as part of a wider study aimed at developing a framework for improving delay claims analysis. The part of the study reported here was based on a questionnaire survey of key informants. The issues investigated include the categories of staff within contracting organizations who contribute to delay claims analyses, the awareness, use and reliability of existing delay analysis methods and the obstacles to their use in practice. The main findings of the study are that: (1) the preparation of delay claims often requires input from commercial managers (quantity surveyors), schedulers, site managers, external claim consultants and estimators; (2) commercial managers have the greatest involvement; (3) claims analyzed using the as-built versus as-planned and the impacted as-planned techniques are often successful although there is considerable literature on the shortcomings of these techniques; and (4) the main obstacles to the use of the methods relates to deficiencies in project records and scheduling practice.  相似文献   

12.
The analysis of project schedules is among the central tasks of construction managers. Parallel to the well-known critical path method, linear scheduling techniques have been researched. The two most fully developed existing methods, the linear scheduling model and the repetitive scheduling method, are reviewed. Based on a discussion of a published example, the new mathematical analysis method for linear and repetitive schedules is introduced. The productivity scheduling method is based on singularity functions that provide a flexible and powerful mathematical model for construction activities and their buffers that are characterized by their linear or repetitive nature. The steps of formulating initial equations, stacking and consolidating them, and deriving information about their criticality are described in detail. The mathematical approach of the new method allows an integrated treatment of activities regardless of the number of changes in productivity within them and does not depend on the graphical representation of the schedule.  相似文献   

13.
While the critical path method (CPM) has been useful for scheduling construction projects, years of practice and research have highlighted serious drawbacks that hinder its use as a decision support tool. This paper argues that many of CPM drawbacks stem from the rough level of detail at which the analysis is conducted, where activities’ durations are considered as continuous blocks of time. The paper thus proposes a new critical path segments (CPS) mechanism with a finer level of granularity by decomposing the duration of each activity into separate time segments. Three cases are used to prove the benefits of using separate time segments in avoiding complex network relationships, accurately identifying all critical path fluctuation, better allocation of limited resources, avoiding multiple-calendar problems, and accurate analysis of project delays. The paper discusses the proposed CPS mechanism and comments on several issues related to its calculation complexity, its impact on existing procedures, and future extensions. This research is more beneficial to researchers and has the potential to revolutionize scheduling computations to resolve CPM drawbacks.  相似文献   

14.
Critical path method delay analysis techniques are widely applied in the construction industry, with the windows method being regarded as technologically advantageous. The approach looks at different schedule snapshots (windows) throughout the project and analyzes the contractor versus owner responsibility for delaying the critical paths. Accordingly, decisions regarding time and/or cost compensation could be made. While the technique is beneficial, it is computationally intensive and produces different results with different window sizes. Commercial software provide little support in this regard and the analysis is usually done manually. In this paper, a modified windows approach is introduced with computerized daily analysis of delays so that accurate and repeatable results are produced. The new approach is coupled with a new representation of progress information and is readily usable by professionals and researchers to evaluate project delays. Details of the daily analysis are introduced along with two case studies that demonstrate its advantages over the traditional windows approach. A downloadable version is made available for experimental use by researchers and professionals.  相似文献   

15.
Schedules are the means of determining project duration accurately, controlling project progress, and allocating resources efficiently in managing construction projects. It is not sufficient in today’s conditions to evaluate the construction schedules that are affected widely by risks, uncertainties, unexpected situations, deviations, and surprises with well-known deterministic or probabilistic methods such as the critical path method, bar chart (Gantt chart), line of balance, or program evaluation and review technique. In this regard, this paper presents a new simulation-based model—the correlated schedule risk analysis model (CSRAM)—to evaluate construction activity networks under uncertainty when activity durations and risk factors are correlated. An example of a CSRAM application to a single-story house project is presented in the paper. The findings of this application show that CSRAM operates well and produces realistic results in capturing correlation indirectly between activity durations and risk factors regarding the extent of uncertainty inherent in the schedule.  相似文献   

16.
Resource calendars specify nonworking days of driving resources involved in construction projects. As part of the resource availability constraints in critical path method (CPM) scheduling, resource calendars may postpone activity start time, extend activity duration, and hence prolong the total project duration. Ultimately, resource calendars bring about changes to the critical path identification. Research has yet to address how to incorporate the effects of multiple resource calendars on the total float determination. In this research, the popular P3 software is used as a tool for investigating the current practice of CPM scheduling under resource limit and calendar constraints. We assess P3’s advanced resource scheduling functions (including resource leveling and resource calendars) and identify P3’s potential errors in total float determination. Further, we propose a new method based on the forward pass analysis alone for accurately evaluating activity total float subject to resource calendar constraints. The application of the new method is illustrated with an activity-on-node case and a precedence-diagram-method case, with the results compared against those produced from P3. Our research has elucidated on some critical issues of resource-constrained scheduling in the application domain of construction project management. The findings will provide useful input for the vendors and users of the CPM software—which is not limited to P3—to improve the scheduling methodology as well as the accuracy of the resulting project schedules.  相似文献   

17.
Scheduling of construction projects that have multiple units, wherein activities repeat from one unit to another, always represent a major challenge to project managers. These projects require schedules that ensure the uninterrupted usage of resources from an activity in one unit to the similar activity in the next unit and maintaining logic constraints at the same time. The scheduling method presented in this paper considers both logic and resource continuity constraints. The method utilizes the critical path method network of a single unit. Start-to-start and finish-to-finish relationships are used. Constant activity production rate is assumed. The proposed approach determines the controlling path (logically and resource critical units) in a simplified way. To automate the proposed algorithm, a macroprogram has been written on commercial scheduling software. Details of the model development and implementation are described, and an example application is presented to validate the proposed approach. The advantages, limitations, and future extensions of the proposed approach are then discussed.  相似文献   

18.
Time-cost analysis is an important element of project scheduling, especially for lengthy and costly construction projects, as it evaluates alternative schedules and establishes an optimum one considering any project completion deadline. Existing methods for time-cost analysis have not adequately considered typical activity and project characteristics, such as generalized precedence relationships between activities, external time constraints, activity planning constraints, and bonuses/penalties for early/delayed project completion that would provide a more realistic representation of actual construction projects. The present work aims to incorporate such characteristics in the analysis and has developed two solution methods, an exact and an approximate one. The exact method utilizes a linear/integer programming model to provide the optimal project time-cost curve and the minimum cost schedule considering all activity time-cost alternatives together. The approximate method performs a progressive project length reduction providing a near-optimal project time-cost curve but it is faster than the exact method as it examines only certain activities at each stage. In addition, it can be easily incorporated in project scheduling software. Evaluation results indicate that both methods can effectively simulate the structure of construction projects, and their application is expected to provide time and cost savings.  相似文献   

19.
Linear repetitive construction projects require large amounts of resources which are used in a sequential manner and therefore effective resource management is very important both in terms of project cost and duration. Existing methodologies such as the critical path method and the repetitive scheduling method optimize the schedule with respect to a single factor, to achieve minimum duration or minimize resource work breaks, respectively. However real life scheduling decisions are more complicated and project managers must make decisions that address the various cost elements in a holistic way. To respond to this need, new methodologies that can be applied through the use of decision support systems should be developed. This paper introduces a multiobjective linear programming model for scheduling linear repetitive projects, which takes into consideration cost elements regarding the project’s duration, the idle time of resources, and the delivery time of the project’s units. The proposed model can be used to generate alternative schedules based on the relative magnitude and importance of the different cost elements. In this sense, it provides managers with the capability to consider alternative schedules besides those defined by minimum duration or maximizing work continuity of resources. The application of the model to a well known example in the literature demonstrates its use in providing explicatory analysis of the results.  相似文献   

20.
Constant exposure to the environment makes highway construction highly dependent on weather. However, highway construction contracts are often unclear about the potential influence of weather-related delays on highway construction project schedules. There is a need to discourage litigation arising from weather-related delays by including in contracts a reasonable number of nonwork days as a consequence of adverse weather and providing an equitable criteria for the course of action when the predictions in the contracts turn out to be inaccurate. To address this need, an integrated framework consisting of the following two key components is proposed: (1) identification of attributes of weather that cause construction delays and (2) generation of synthetic weather sequences using a stochastic weather generator to quantify and provide probabilistic forecasts of weather threshold values. The utility of this framework is demonstrated through its application to construction work on a project in Texas. The use of probabilistic forecast of construction delay attributes provided by a semiparametric weather generator in this research is an example of interdisciplinary study to help address this problem. The result of the research is better decision support for agencies who wish to author contracts that more equitably allow for the influence of weather during construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号