首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of a novel method for the identification of low-molecular-weight noncovalent ligands to a macromolecular target is reported. This technique is based on the measurement of analyte diffusion coefficients by electrospray mass spectrometry (ESI-MS) (Clark et al., Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462). Potential ligands have large diffusion coefficients as long as they are free in solution. Binding to a macromolecular target, however, drastically reduces the diffusional mobility of any ligand species. Mixtures containing six different saccharides [ribose, rhamnose, glucose, maltose, maltotriose, and N,N',N'-triacetylchitotriose (NAG(3))] were screened for noncovalent binding to lysozyme. Of these six compounds, only NAG(3) is known to bind to the protein. In "direct" binding tests, NAG(3) shows a significantly reduced diffusion coefficient in the presence of the protein. No changes were observed for any of the other saccharides. In a second set of experiments, the use of a "competition" screening method was explored in which mixtures of candidate saccharides were tested for their ability to displace a reference ligand from the target. The addition of NAG(3)-containing mixtures significantly increased the diffusion coefficient of the reference ligand NAG(4) (N,N',N',N'-tetraacetylchitotetrose), whereas mixtures that did not contain NAG(3) had no effect. These data clearly indicate the potential of ESI-MS-based diffusion measurements as a novel tool to screen compound libraries for binding to proteins and other macromolecular targets. In contrast to conventional ESI-MS-based ligand-receptor binding studies, this method does not rely on the preservation of noncovalent interactions in the gas phase.  相似文献   

2.
A fully automated biophysical assay based on electrospray ionization mass spectrometry (ESI-MS) for the determination of the dissociation constants (KD) between soluble proteins and low molecular mass ligands is presented. The method can be applied to systems where the relative MS response of the protein and the protein-ligand complexes do not reflect relative concentrations. Thus, the employed approach enables the use of both electrostatically and nonpolar bound complexes. The dynamic range is wider than for most biological assays, which facilitates the process of establishing a structure-activity relationship. This fully automated ESI-MS assay is now routinely used for ligand screening. The entire procedure is described in detail using hGHbp, a 25-kDa extracellular soluble domain of the human growth hormone receptor, as a model protein.  相似文献   

3.
A new method for determination of dissociation constants (Kd) using on-line titration by electrospray ionization mass spectrometry is presented. Unlike in common titration experiments, where a set of discrete solutions with a fixed concentration of host and increasing concentration of guest is measured, here a continuous Gaussian concentration profile of guest, formed by band-broadening dispersion during passage through a long tubing, is utilized. An equation allowing access to dissociation constant values from experimental data fit to a 1:1 binding model was derived and incorporated into an in-house-written computer program for automated data processing. The new method is demonstrated for noncovalent complexes of cinchona alkaloid carbamate chiral selectors with N-dinitrobenzoylleucine enantiomers and a series of cyclodextrins with sulfonated azo dyes.  相似文献   

4.
The drug discovery process relies on characterizing structure-activity relationships, since specific ligand-target interactions often result in important biological functions. Measuring diffusion coefficients by nuclear magnetic resonance spectroscopy is a useful way to study binding, because changes can be detected when a small ligand interacts with a macromolecular target. Diffusion coefficients can be miscalculated, however, due to magnetization transfer between the receptor and ligand. This transferred nuclear Overhauser effect (trNOE) disrupts the observed signal decay due to diffusion as a function of the experimental diffusion time. Since longer diffusion times also selectively edit free ligand signal, the measured diffusion coefficients become biased toward the fraction of bound ligand. Despite this discrepancy, under these experimental conditions, the trNOE selectively influences the measured signals of binding ligands and can be used to gain insight into ligand-protein interactions. These phenomena have been studied for caffeine and L-tryptophan, which bind to human serum albumin, and the antimalarial agent trimethoprim, which interacts with dihydrofolate reductase. The results provide insight into the nature of ligand-protein binding and are thus useful for elucidating the molecular features of the ligand that interact with the protein.  相似文献   

5.
A new method for the determination of binding constants using electrospray ionization mass spectrometry is presented. The intensity of a reference complex with a known log K value is monitored before and after addition of a second host or guest. On the basis of the change in intensity of the reference complex and extrapolation from a calibration curve, the log K value is then derived for the complex of interest using a set of simultaneous equilibrium equations. Binding constants of several crown ether-alkali metal cation complexes that were previously studied were determined to validate this strategy. Log K values for complexes involving dibenzo-16-crown-5 and its sym-oxyacetate derivative with Na+ or K+ were also determined.  相似文献   

6.
The distribution of metal species in solution was determined using flow injection electrospray ionization mass spectrometry. Complexes formed by selected metal ions with added organic ligands in 50:50 water/acetonitrile and 50:50 water/methanol under acidic, neutral, and basic conditions were detected using electrospray ionization conditions optimized to best represent solution-phase interactions. Metal species containing acetate, nitrate, and solvent molecules predominated in acidic solution but became less abundant at higher pH. Interactions between metal ions and added organic ligands became more selective with increasing pH, showing the expected preference of hard and soft ligands for metal ions of the corresponding type. Species distributions also tended toward larger complexes as pH increased. Overall ion yield was greater for aqueous acetonitrile than for aqueous methanol solutions; however, reduction of copper(II) in aqueous acetonitrile resulted in the detection of copper(I) complexes for certain ligands. Experimental results for copper(II) and 8-hydroxyquinoline in 50:50 water/methanol showed good agreement with aqueous speciation predicted using the thermodynamic equilibrium model MINEQL. Detection of neutral complexes was achieved by protonation, deprotonation, or electrochemical oxidation during electrospray.  相似文献   

7.
The isotope ratio capabilities of an electrospray ionization source interfaced to a quadrupole mass spectrometer are described. With the instrument operated in the metal ion mode, isotope measurements of Ag, Tl, and Pb are conducted using elemental ions produced from 1 × 10(-)(4) M solutions of metal nitrates or acetates in methanol. For Ag and Tl, spray conditions are identified that produce spectra free of MH(+) ions. Unbiased Ag and Tl ratio measurements with precisions of ~0.2% RSD are readily attained. Further improvement in relative precision appears to be limited by temporal drift in the degree of mass discrimination imparted to the measurements by the mass spectrometer. Isotopic analysis of Pb is greatly complicated by significant yields of PbH(+) polyatomic ions.  相似文献   

8.
Chemical structures of polymer end groups play an important role in determining the functional properties of a polymeric system. We present a mass spectrometric method for determining end group structures. Polymeric ions are produced by electrospray ionization (ESI), and they are subject to source fragmentation in the ESI interface region to produce low-mass fragment ions. A series of source-fragment ions containing various numbers of monomer units are selected for high-energy collision-induced dissociation (CID) in a sector/time-of-flight tandem mass spectrometer. It is shown that high-energy CID spectra of source-induced fragment ions are very informative for end group structure characterization. By comparing the CID spectra of fragment ions with those of known chemicals, it is possible to unambiguously identify the end group structures. The utility of this technique is illustrated for the analysis of two poly(ethylene glycol)-based slow-releasing drugs where detailed structural characterization is of significance for drug formulation, quality control, and regulatory approval. Practical issues related to the application of this method are discussed.  相似文献   

9.
Ham BM  Cole RB 《Analytical chemistry》2005,77(13):4148-4159
A new approach for calculating bond dissociation energies (BDEs) from ES-MS/MS measurements has been developed. The new method features a "derived effective reaction path length" that has been applied to measure BDEs of alkali metal (Li+) adducts and halide (Cl-) adducts of monoacylglycerol, 1,2-diacylglycerol, and 1,3-diacylglycerol lipids. Also studied were lithium-bound dimers of monoacylglycerols, 1,2-diacylglycerols, and 1,3-diacylglycerols. BDEs for the adducts and dimers of the lipids were derived from collision-induced dissociation experiments using a triple quadrupole mass spectrometer with electrospray as the ionization source. Mass spectral data were used to empirically derive a single-exponential growth equation that relates product cross section to collision energy. From these single-exponential equations, a general second-order polynomial was derived using a multivariate growth curve model that enables prediction of BDEs of unknown complexes. Mass spectral results were compared to computer-generated bond dissociation energies using Becke-style three-parameter density functional theory (B3LYP, employing the Lee-Yang-Parr correlation functional), with excellent agreement between experimental and theoretical energy values. The newly developed method is general in nature and can be used for the measurement of metal or halide ionic adduct bond dissociation energies and for the measurement of bond energies of noncovalent interactions such as dimer dissociation energies. The validity of the method has been rigorously established using a triple quadrupole, but it may also be applied to other mass spectrometers that allow user control of the collision cell potential.  相似文献   

10.
Lim H  Schultz DG  Yu C  Hanley L 《Analytical chemistry》1999,71(13):2307-2317
Relative dissociation energies (RDEs) are obtained for the major fragment ions produced by electrospray ionization/surface-induced dissociation of singly protonated triglycine, tetraglycine, leucine enkephalin, and leucine enkephalin arginine. A previously described data analysis method (Lim, H.; et al. J. Phys. Chem. B 1998, 102, 4753) is employed to analyze the energy-resolved mass spectra by subtracting out the distribution of energy transferred to the surface, integrating over the distribution of the incident ion energy, and taking into account the precursor ion initial internal energy and kinetic energy distributions. These variables are optimized by anchoring the RDE for the lowest energy fragment of a given precursor ion to its literature values and then using these optimized parameters to obtain the other RDEs. The RDEs of the four major fragments of triglycine vary from 2.4 eV for the b(2) fragment ion to 6.0 eV for the a(2) ion. The RDEs of the four major fragments of tetraglycine vary from 3.2 eV for the y(2) ion to 5.7 eV for the a(2) ion. The leucine enkephalin RDEs range from 1.1 eV for the b(4) ion to 2.1 eV for the b(2) ion. The leucine enkephalin arginine RDEs all lay between 2.5 and 3.5 eV. The overall trend of fragmentation order for all peptides is (y(n), b(n)) < a(n) and is consistent with the results from other experiments. The peptide RDEs presented here are only as accurate as the literature values to which they are anchored. Determination of absolute dissociation energies from SID data will require further refinement of the data analysis method.  相似文献   

11.
12.
A glass microfluidic device with two independent electrospray ionization (ESI) emitters has been designed to sequentially generate ions from different solutions for mass analysis. Rapid modulation between the emitters is accomplished by turning on and off the voltage that simultaneously generates the fluid flow rate and ESI potential. The time required to switch between the two electrospray signals is less than 70 ms. Using the second emitter to introduce a reference compound for internal calibration, accurate mass measurements (less than 3 ppm mass error) were obtained with a time-of-flight mass spectrometer.  相似文献   

13.
14.
The high sensitivity, extended mass range, and fast data acquisition/processing of mass spectrometry and its coupling with native electrospray ionization (ESI) make the combination complementary to other biophysical methods of protein analysis. Protein assemblies with molecular masses up to MDa are now accessible by this approach. Most current approaches have used quadrupole/time-of-flight tandem mass spectrometry, sometimes coupled with ion mobility, to reveal stoichiometry, shape, and dissociation of protein assemblies. The amino-acid sequence of the subunits, however, still relies heavily on independent bottom-up proteomics. We describe here an approach to study protein assemblies that integrates electron-capture dissociation (ECD), native ESI, and FTICR mass spectrometry (12 T). Flexible regions of assembly subunits of yeast alcohol dehydrogenase (147 kDa), concanavalin A (103 kDa), and photosynthetic Fenna-Matthews-Olson antenna protein complex (140 kDa) can be sequenced by ECD or "activated-ion" ECD. Furthermore, noncovalent metal-binding sites can also be determined for the concanavalin A assembly. Most importantly, the regions that undergo fragmentation, either from one of the termini by ECD or from the middle of a protein, as initiated by CID, correlate well with the B-factor from X-ray crystallography of that protein. This factor is a measure of the extent an atom can move from its coordinated position as a function of temperature or crystal imperfections. The approach provides not only top-down proteomics information of the complex subunits but also structural insights complementary to those obtained by ion mobility.  相似文献   

15.
A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or biological system. The ideas presented draw upon established techniques in data analysis. Hence, they are also widely applicable to other types of X-omics data provided there is a proper pretreatment of the data. These issues are discussed using a real-life metabolomics data set from a microbial fermentation process.  相似文献   

16.
Electrospray ionization broadband FTICR mass spectrometry at a mass resolving power, m/delta m50% > or = 400,000 has achieved the first direct mass spectral resolution of phosphorylated and sulfated peptides (or nucleotides) of the same nominal mass. The elemental composition difference in each case is PH versus S (9.5 mDa), requiring a minimum mass resolving power ((m2 - m1)/ml) of 118,000 (C terminal amidated cholecystekinin fragment 26-33 (CCK-8), DY(PO3H2)MGWMDF-NH2 versus DY(SO3H)MGWMDF-NH2) or 65,400 (adenosine triphosphate vs 3-phosphoadenosine 5'-phosphosulfate). The isobaric mass doublets were detected in broadband mode (400 < m/z <1400) in the presence of dozens of other species. It is therefore now possible to distinguish phosphorylated from sulfated peptides, even when both species are present at the same time in a protein digest.  相似文献   

17.
Acid dissociation constants of side-chain acidic groups of amino acid residues in peptides can be determined by 1H NMR, provided resonances can be resolved for carbon-bonded reporter protons located near the acidic group. We report here that the increased resolution of the band-selective homonuclear-decoupled (BASHD) TOCSY experiment greatly extends the range of application of the NMR method for determination of residue-specific, side-chain acid dissociation constants of peptides that contain multiple residues of the same amino acid. Chemical shift-pH titration curves are obtained from cross-peaks for reporter protons in BASHD-TOCSY spectra measured as a function of pH. The method is based on using sequence-dependent differences in the chemical shifts of resonances for the backbone CalphaH protons and the increased resolution in BASHD-TOCSY spectra from collapse of CalphaH multiplets to singlets in the F1 dimension to resolve resonances for the side-chain reporter protons. Application of the method is demonstrated by determination of residue-specific pKA values for each of the side-chain ammonium groups of the six lysine residues in the hexadecapeptide Ac-SRGKAKVKAKVKDQTK-NH2. Chemical shift-pH titration curves were obtained for the lysine side-chain CepsilonH2 reporter protons from their resolved CalphaH-CepsilonH2 TOCSY cross-peaks in BASHD-TOCSY spectra. Relative acidities of the six ammonium groups were also determined from the residue specific chemical shift-pH titration data by a pH-independent method, and calculation of fractional concentrations of protonation microspecies using the residue-specific pKAs is also described.  相似文献   

18.
The dissociation of protein ions formed by ESI ranging in size from 12 to 29 kDa using sustained off-resonance irradiation collisional activation was investigated as a function of charge state in a 9.4-T Fourier transform mass spectrometer. Addition of m-nitrobenzyl alcohol to denaturing solutions of proteins was used to form very high charge states of protein ions for these experiments. For all proteins in this study, activation of the highest charge state results in a single dominant backbone cleavage, often with less abundant cleavages at the neighboring 3-5 residues. This surprising phenomenon may be useful for the "top-down" identification of proteins by producing sequence tags with optimum sensitivity. There is a slight preference for cleavage adjacent to acidic residues and proline. Solution-phase secondary structure does not appear to play a significant role. The very limited dissociation channels observed for the supercharged ions may be due, in part, to the locations of the charges on the protein.  相似文献   

19.
The potential of ion-pair reversed-phase high-performance liquid chromatography on-line hyphenated to electrospray ionization time-of-flight mass spectrometry for the characterization of polymerase chain reaction (PCR) amplified nucleic acids was evaluated. For that purpose, a "SNP toolbox" was constructed by cloning and PCR-mediated site-directed in vitro mutagenesis at nucleotide position (ntp) 16,519 of a sequence-verified fragment of the human mitochondrial genome (ntps 15,900-599). Confirmatory sequencing demonstrated that within the sequences of the clones one and the same base was mutated to all other bases. Using these clones or equimolar mixtures of these clones as PCR templates, 51-401-bp-long amplicons were generated, which were used to determine the upper size limits of PCR products for the unequivocal detection of sequence variations in homo- and heterozygous samples. Based on the high mass spectrometric performance of the applied time-of-flight mass spectrometer, the unequivocal genotyping of all kinds of single base exchanges in PCR amplicons from heterozygous samples with lengths up to 254 base pairs (bp) was demonstrated. Considering homozygous samples, the successful genotyping of single base substitutions in up to 401-bp-long PCR products was possible. Consequently, the described hyphenated technique represents one of the most powerful mass spectrometric genotyping assays available today.  相似文献   

20.
Electrospray ionization mass spectrometry (ESI-MS) was applied for the characterization of inorganic polyphosphates [orthophosphate, pyrophosphate, tripolyphosphate, trimetaphosphate, and tetrapolyphosphatel. The high selectivity of ESI-MS allows the detection of different polyphosphate species without preseparation by ion chromatography or capillary electrophoresis. Furthermore, ESI-MS does not require the incorporation of UV-absorbing chromophores into the analytical method for the detection of phosphates, unlike conventional UV-chromatographic methods. Limits of detection by ESI-MS were estimated to range from approximately 1 to 10 ng/mL. The quantification of polyphosphate samples as single-component and multicomponent mixtures was investigated. Linear signal response for single-component samples ranged from the limit of detection to approximately 10 microg/mL Quantification of polyphosphate in streamwater is demonstrated using the standard addition method. The effect of multi-polyphosphate components and salts on signal response was also studied. For concentrations less than 2.0 microg/mL, signal response from a tetrapolyphosphate sample was comparable to those obtained from tetrapolyphosphate-tripolyphosphate mixtures. Signal response obtained from tetrapolyphosphate in the presence of tripolyphosphate or NH4NO3 at higher concentrations (approximately 50 microg/mL and 35 microg/mL, respectively) was significantly lower relative to single-component standards (approximately 40%-70%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号