首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Troponin T (TnT) is an essential element in the thin filament-based regulatory system of striated muscle. Alternative mRNA splicing generates multiple TnT isoforms with primary structural differences in the NH2-terminal region. The functional significance of this hypervariable NH2-terminal domain and the developmental or muscle type-specific TnT isoforms is not fully understood. We have analyzed chicken breast muscle TnT containing a metal-binding cluster [H(E/A)EAH]4-7 (Tx) in the NH2-terminal region to demonstrate potential effects of the NH2-terminal structure on the conformation of TnT [Ogut, O., and Jin, J.-P. (1996) Biochemistry 35, 16581-16590]. Using specific antibody epitope analysis on this metal-binding TnT model, this study revealed that the binding of Zn2+ to the NH2-terminal region of chicken breast muscle TnT induces extensive conformational changes in the whole protein as demonstrated by a significant decrease in binding avidity of a polyclonal anti-TnT serum which recognizes multiple epitopes on the TnT molecule. This NH2-terminal configuration-based effect is not restricted to the metal ion interaction, whereas the binding of anti-NH2 terminus monoclonal antibodies to TnT induced similar changes. Protein-binding assays have shown that the NH2-terminal variability-induced conformational changes can alter TnT's binding affinity for tropomyosin and troponin I. The results suggest a functional modulation of TnT through the configuration of the NH2-terminal domain, and this novel mechanism may mediate the physiological significance of the TnT isoform regulation.  相似文献   

11.
We expressed the NH2-terminal domain of the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a baculovirus expression system in insect cells. Expression of the 203-amino acid NH2-terminal domain (residues 1-203), which is 24-30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recombinant protein apparently due to incorrect folding. The longer NH2-terminal recombinant protein (residues 1-310), which shares 32% identity with Escherichia coli L-methionyl-tRNA formyltransferase (EC 2.1.2.9), was expressed as a soluble protein. During expression, this protein was released from cells to the culture medium and was purified from the culture medium by 5-formyltetrahydrofolate-Sepharose affinity chromatography followed by chromatography on a Mono-Q column. We found that the purified NH2-terminal domain bears a folate binding site, possesses 10-formyltetrahydrofolate hydrolase activity, and exists as a monomer. Titration of tryptophan fluorescence showed that native FDH bound both the substrate of the reaction, 10-formyl-5, 8-dideazafolate, and the product of the reaction, 5,8-dideazafolate, with the same affinities as its NH2-terminal domain did and that both proteins bound the substrate with a 50-fold higher affinity than the product. Neither the NH2-terminal domain nor its mixture with the previously purified COOH-terminal domain had 10-formyltetrahydrofolate dehydrogenase activity. Formation of complexes between the COOH- and NH2-terminal domains also was not observed. We conclude that the 10-formyltetrahydrofolate dehydrogenase activity of FDH is a result of the action of the aldehyde dehydrogenase catalytic center residing in the COOH-terminal domain on the substrate bound in the NH2-terminal domain and that the intermediate domain is necessary to bring the two functional domains together in the correct orientation.  相似文献   

12.
13.
The cellulosome-integrating protein CipA, which serves as a scaffolding protein for the cellulolytic complex produced by Clostridium thermocellum, comprises a COOH-terminal duplicated segment termed the dockerin domain. This paper reports the cloning and sequencing of a gene, termed sdbA (for scaffoldin dockerin binding), encoding a protein which specifically binds the dockerin domain of CipA. The sequenced fragment comprises an open reading frame of 1,893 nucleotides encoding a 631-amino-acid polypeptide, termed SdbA, with a calculated molecular mass of 68,577 kDa. SAA comprises an NH2-terminal leader peptide followed by three distinct regions. The NH2-terminal region is similar to the NH2-terminal repeats of C. thermocellum OlpB and ORF2p. The central region is rich in lysine and harbors a motif present in Streptococcus M proteins. The COOH-terminal region consists of a triplicated sequence present in several bacterial cell surface proteins. The NH2-terminal region of SdbA and a fusion protein carrying the first NH2-terminal repeat of OlpB were shown to bind the dockerin domain of CipA. Thus, a new type of cohesin domain, which is present in one, two, and four copies in SdbA, ORF2p, and OlpB, respectively, can be defined. Since OlpB and most likely SdbA and ORF2p are located in the cell envelope, the three proteins probably participate in anchoring CipA (and the cellulosome) to the cell surface.  相似文献   

14.
The peroxisome proliferator-activated receptors (PPAR) are members of the nuclear receptor supergene family and are considered as key sensors of both lipid and glucose homeostasis. The role of the PPARgamma isoform in glucose metabolism is illustrated by the fact that anti-diabetic thiazolidinediones have been shown to be bona fide PPARgamma ligands. Here we report the crystal structure of apo-PPARgamma ligand binding domain (LBD) determined to 2.9-A resolution. Although the structure of apo-PPARgamma-LBD retains the overall fold described previously for other nuclear receptor LBDs, three distinct structural differences are evident. 1) The core AF-2 activation domain of apo-PPARgamma LBD is folded back toward the predicted ligand binding pocket similar to that observed in the holo-forms of other nuclear receptors. 2) The proposed ligand binding pocket of apo-PPARgamma-LBD is larger and more accessible to the surface in contrast to other LBDs. 3) The region of the LBD called the omega-loop is extended in PPARgamma and contains additional structural elements. Taken together, the apo-PPARgamma-LBD structure is in several aspects different from previously described LBDs. Given the central role of PPARgamma as a mediator in glucose regulation, the structure should be an important tool in the development of improved anti-diabetic agents.  相似文献   

15.
16.
Mu transposase is a member of a protein family that includes many transposases and the retroviral integrases. These recombinases catalyze the DNA cleavage and joining reactions essential for transpositional recombination. Here we demonstrate that, consistent with structural predictions, aspartate 336 of Mu transposase is required for catalysis of both DNA cleavage and DNA joining. This residue, although located 55 rather than 35 residues NH2-terminal of the essential glutamate, is undoubtedly the analog of the second aspartate of the Asp-Asp-35-Glu motif found in other family members. The core domain of Mu transposase consists of two subdomains: the NH2-terminal subdomain (IIA) contains the conserved Asp-Asp-Glu motif residues, whereas the smaller COOH-terminal subdomain (IIB) contains a large positively charged region exposed on its surface. To probe the function of domain IIB, we constructed mutant proteins carrying deletion or substitution mutations within this region. The activity of the deletion proteins revealed that domains IIA and IIB can be provided by different subunits in the transposase tetramer. Substitution mutations at two pairs of exposed lysine residues within the positively charged surface of domain IIB render transposase defective in transposition at a reaction step after DNA cleavage but prior to DNA joining. The severity of this defect depends on the structure of the DNA flanking the cleavage site. Thus, these data suggest that domain IIB is involved in manipulating the DNA near the cleavage site and that this function is important during the transition between the DNA cleavage and the DNA joining steps of recombination.  相似文献   

17.
The kinase insert domain-containing receptor (KDR) for vascular endothelial growth factor (VEGF) has been shown to be involved in vasculogenesis and angiogenesis. This receptor is characterized by seven immunoglobulin (Ig)-like domains within its extracellular region. To identify the domains involved in VEGF binding, we constructed various deletion mutants of the extracellular region fused with the crystallizable fragment portion of an IgG and then examined the binding affinity with VEGF by means of the BIAcore biosensor assay. Deletion of the COOH-terminal two or three Ig-like domains out of a total of seven affected ligand dissociation rather than association. Further deletion of the fourth domain caused a drastic decrease in the association rate. Binding ability was abolished completely with removal of the third domain. The mutant KDR proteins lacking the NH2-terminal Ig-like domain exhibited a slightly higher association rate compared with those of the mutants having this domain. Deletion of the first two NH2-terminal Ig-like domains caused a drastic reduction in the association rate, but affinity to VEGF was retained. These results suggest that the third Ig-like domain is critical for ligand binding, the second and fourth domains are important for ligand association, and the fifth and sixth domains are required for retention of the ligand bound to the receptor molecule. The first Ig-like domain may regulate the ligand binding.  相似文献   

18.
19.
The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell-cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell-cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.  相似文献   

20.
An initial event in atherosclerosis is the retention of lipoproteins within the intima of the vessel wall. The co-localization of apolipoprotein (apo) B and proteoglycans within lesions has suggested that retention is due to lipoprotein interaction with these highly electronegative glycoconjugates. Both apoB100- and apoB48-containing lipoproteins, i.e. low density lipoproteins (LDLs) and chylomicron remnants, are atherogenic. This suggests that retention is due to determinants in the initial 48% of apoB. To test this, the interaction of an apoB fragment (apoB17), and apoB48- and apoB100- containing lipoproteins with heparin, subendothelial matrix, and artery wall purified proteoglycans was studied. ApoB100-containing LDL from humans and human apoB transgenic mice and apoB48-containing LDLs from apoE knockout mice were used. Despite the lack of the carboxyl-terminal 52% of apoB, the apoB48-LDL bound to heparin-affinity gel as well as did apoB100-LDL. An NH2-terminal fragment containing 17% of full-length apoB was made using a recombinant adenovirus; apoB17 bound to heparin as well as did LDL. Monoclonal antibodies against the NH2-terminal region of apoB decreased apoB100 LDL binding to heparin, whereas antibodies against the LDL receptor-binding region did not alter LDL-heparin interaction. The role of the NH2-terminal region of apoB in LDL interaction with matrix molecules was also assessed. Media containing apoB17 decreased LDL binding to subendothelial matrix by 42%. Moreover, removal of the apoB17 by immunoprecipitation abrogated the inhibitory effect of these media. Antibodies to the NH2-terminal region decreased LDL binding to matrix and dermatan sulfate proteoglycans. Purified apoB17 effectively competed for binding of LDL to artery derived decorin and to subendothelial matrix. Thus, despite the presence of multiple basic amino acids near the LDL receptor-binding domain of LDL, the NH2-terminal region of apoB is sufficient for the interaction of lipoproteins with glycoconjugates produced by endothelial and smooth muscle cells. The presence of a proteoglycan-binding site in the NH2-terminal region of apoB may explain why apoB48- and apoB100-containing lipoproteins are equally atherogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号