首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Gamma ray‐induced seeded emulsion polymerization of methyl methacrylate and butyl acrylate was carried out in the presence of polymerizable polysiloxane seed latex, which was obtained by the ring‐opening copolymerization of octamethyl cyclotetrasiloxane (D4) and tetramethyl tetravinyl cyclotetrasiloxane(VD4) catalyzed by dodecylbenzene sulfonic acid (DBSA). After the first seeded polymerization, 3‐methacryloxylpropyltrimethoxylsilane (MPS) was added for the second seeded polymerization. The conversion–time curve showed that the first seeded polymerization rate was accelerated much by the polysiloxane seed latex. The final composite lattices also showed good storage stability, mechanical stability, and high electrolyte resistance ability. The morphology of the composite latex particles was found to be a quite uniform fine structure by transmission electron microscopy (TEM). The graft of polyacrylates onto polysiloxane and hydrolysis of MPS were confirmed by Fourier transform infrared (FT‐IR) spectroscopy. The mechanical performance, water absorption ratio, surface properties, and transparency of the latex films were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1406–1411, 2007  相似文献   

2.
Antimony doped tin oxide (ATO) nanoparticles were used as nanofillers to improve mechanical properties of UV‐cured polyester–acrylate films. To improve the dispersion of ATO nanoparticles in the polyester–acrylate resin matrix and to strengthen interfacial interactions between ATO nanoparticles and the resin matrix ATO nanoparticles were first organically modified with 3‐methacryloxypropyltrimethoxysilane (MPS). The modification of ATO nanoparticles with MPS was confirmed by FTIR spectroscopy and thermogravimetric analysis (TGA). UV‐curing behaviors of the nanocomposites films were investigated by FTIR spectroscopy. Compared with the film with neat ATO nanoparticles, the film with the same amount of MPS‐modified ATO nanoparticles showed slightly higher UV‐curing rate and final conversion. The mechanical properties of the nanocomposites films were measured by universal testing machine. The MPS‐modified ATO nanoparticles could improve considerably the mechanical properties of the UV‐cured polyester–acrylate nanocomposites films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Multilayer core–shell poly (styrene-butyl acrylate) latex particles were synthesized via semi-continuous emulsion polymerization, and the process was monitored by a dynamic laser scattering (DLS). The layers of the latex particles were designed to have progressively decreasing glass transition temperatures (Tg) from the core (layer 1) to the outmost shell (layer 4), which was achieved by varying the mass ratio of butyl acrylate (BA) to styrene (St) in the synthesis of each layer. Divinylbenzene (DVB) was added as the crosslinking agent in each layer except for the outmost layer in order to ensure that a continuous film can be formed at room temperature. The damping properties of the formed films as well as the influences of synthesis variables, including the content of DVB added in the internal layers (i.e., layers 1, 2, and 3), the total mass ratio and sequence between layers 3 and 4, and the Tg of each layer were studied by dynamic mechanical analysis (DMA). The results showed that four-layer core–shell latex particles with proper DVB content in each layer exhibited the best damping properties, with a broad effective damping range (tan δ > 0.3) ranging from −12.0 °C to 97.2 °C. The widening of the damping peak can be explained by the formation of a gradient IPN structure in latex particles. Furthermore, the morphology of the formed films was studied by AFM in tapping mode.  相似文献   

5.
Modified micro-emulsion polymerization was successfully used to synthesize a kind of ambient temperature self-crosslinking core–shell emulsion, consisting of polyacrylate core and vinyltriethoxysilane (VTES) modified polyacrylate shell, by varying the ratio of soft monomer (BA) and hard monomer (MMA) which is different in the core and shell. The emulsion and its film formed at ambient temperature were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Core–shell structure was clearly shown in TEM micrographs, and two distinct glass transition temperatures (T g) were confirmed by DSC analysis. Lower T g of core phase analyzed by DSC and self-crosslinking properties of VTES characterized by crosslinking degree cause latex particles form continuous film at ambient temperature. Thermal and mechanical properties and the surface properties of the latex films were also investigated. Results showed that the core–shell latex films containing 5 and 7.5 % VTES exhibited higher thermal stability, better mechanical properties, higher contact angle, and water resistance compared with pure polyacrylate film.  相似文献   

6.
The mechanical and thermal properties of films from a series of two-stage emulsion polymers were investigated. The emulsion polymers were made by polymerizng styrene in the presence of a preformed poly(butyl acrylate-co-divinyl benzene) seed latex. The effects of seed particle size, seed particle crosslinking via the amount of divinyl benzene, styrene/butyl acrylate ratio, and thermal history on the film properties were studied. Latex particles were characterized by light scattering and film formation behavior. Dried films were characterized by differential scanning calorimetry, dynamic mechanical analysis, and stress-strain behavior. Although evidence was obtained for nearly complete phase separation between the polystyrene (PS) and poly(butyl acrylate) (PBA) phases, the site of styrene polymerization and thus the PS phase morphology is influenced by seed particle size, seed crosslinking, and S/BA ratio. The morphology of as-dried films consists of finely dispersed PS domains in a continuous PBA matrix. Thermal annealing above the PS Tg causes coalescence of the PS domains, resulting in significantly improved mechanical properties. The extent of PS phase coalescence is also influenced by the level of seed crosslinking.  相似文献   

7.
马英子  肖新颜 《化工学报》2011,62(4):1143-1149
采用原位乳液聚合法,在可聚合阴离子乳化剂/非离子乳化剂复配体系下,以γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)改性的纳米SiO2、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)等为核相组成,以MMA、BA及甲基丙烯酸十二氟庚酯(DFMA)为壳相单体,合成纳米SiO2/含氟聚丙烯酸酯复合乳液.考察了纳...  相似文献   

8.
Acrylate pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer seeded semi-batch emulsion polymerization process with butyl acrylate (BA), methyl methacrylate (MMA), acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA). These PSA polymers were then cross-linked with trifunctional propyleneimine external cross-linker (SAC-100) to study the cross-linking reaction between carboxylic group of the polymer chain and cross-linking agent. It was found that cross-linking provided a significant influence on the film formation process based on the result of SEM analysis. In addition, with the increase of SAC-100 content, the gel content of the polymer increased significantly, while molecular weight between cross-link points (Mc) and the sol molecular weight (Mw, Mn) of the polymer decreased remarkably. The TGA result showed that the addition of the external cross-linker can enhance the thermal stability of the latex film. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncross-linked counterparts. Besides, dynamic mechanical analysis (DMA) was also used to evaluate the viscoelastic properties of the acrylate emulsion PSA film.  相似文献   

9.
Polyacrylate/nano-SiO2 composite leather finishing agent was prepared via emulsion polymerization with butyl acrylate, methyl methacrylate, lauryl methacrylate as the main raw materials. The effects of different polymerization processes, lauryl methacrylate on the properties of composite were studied. The results show pre-emulsified emulsion polymerizations obtain a lower gel rate and higher conversion rate. Adding lauryl methacrylate can improve the water resistance, physical and mechanical properties of the composite film. Leather finished with P(Butyl acrylate/Methyl methacrylate/Lauryl methacrylate)/nano-SiO2 composite latex show lower water-vapor permeability, lower water uptake and better resistence to the external force than that of the leather finished with P(Butyl acrylate/Methyl methacrylate)/nano-SiO2 composite latex.  相似文献   

10.
The mechanical and surface properties of films prepared from model latex/pigment blends were studied using tensile tests, surface gloss measurements, and atomic force microscopy. Functionalized poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] and ground calcium carbonate (GCC) were used as latex and extender pigment particles, respectively. The critical pigment volume concentration of this pigment/latex blend system was found to be between 50 and 60 vol % as determined by surface gloss measurement and tensile testing of the blend films. As the pigment volume concentration increased in the blends, the Young's modulus of the films increased. Nielsen's equations were found to fit the experimental data very well. When the surface coverage of carboxyl groups on the latex particles was increased, the yield strength and Young's modulus of the films both increased, indicating better adhesion at the interfaces between the GCC and latex particles. When the carboxyl groups were neutralized during the film formation process, regions with reduced chain mobility were formed. These regions acted as a filler to improve the modulus of the copolymer matrix and the modulus of the resulting films. The carboxyl groups on the latex particle surfaces increased the surface smoothness of the films as determined by surface gloss measurement. When the initial stabilizer coverage of the latex particles was increased, the mechanical strength of the resulting films increased. At the same time, rougher film surfaces also were observed because of the migration of the stabilizer to the surface during film formation. With smaller‐sized latex particles, the pigment/latex blends had higher yield strength and Young's modulus. Higher film formation temperatures strengthen the resulting films and also influence their surface morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4550–4560, 2006  相似文献   

11.
Poly(vinyl acetate-co-butyl acrylate) latexes were prepared by using semi-continuous emulsion polymerization method in presence of two different protective colloids which were oligomeric N-methylol acrylamide and conventional poly(vinyl alcohol). The effects of these protective colloids on colloidal, surface and film properties of latexes were examined. Poly(vinyl acetate-co-butyl acrylate) synthesized with oligomeric N-methylol acrylamide, which was characterized by FT-IR, NMR and MALDI-TOF MS, was found to have lower viscosity, finer particle size, better latex stability, lower polydispersity, higher Tg and better film forming behavior compared to those synthesized from the poly(vinyl alcohol).  相似文献   

12.
Polysilsesquioxanes (PSQ)-based core–shell fluorinated polyacrylate/silica hybrid latex coatings were synthesized with PSQ latex particles as the seeds, and methyl methacrylate, butyl acrylate, 3-(trimethoxysilyl) propyl methacrylate (MPS)-modified SiO2 nanoparticles (NPs), 1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA) as the shell monomers by emulsifier-free miniemulsion polymerization. The results of Fourier transform IR spectroscopy, transmission electron microscopy, and dynamic light scattering suggested the obtained hybrid particles emerged with trilayer core–shell pattern. Contact angle analysis, x-ray photoelectron spectroscopy, and atom force microscopy results indicated that the hybrid film containing SiO2 NPs showed higher hydrophobicity, lower surface free energy and water absorption, in comparison with the control system (without SiO2 NPs). Compared with the control system, the hybrid latex film containing SiO2 NPs in the fluorinated polyacrylate shell layer showed the higher content of fluorine atoms and a rougher morphology on the film surface. Additionally, thermogravimetric analysis demonstrated the enhanced thermostability of PSQ-based nanosilica composite fluorinated polyacrylate latex film.  相似文献   

13.
RAFT (reversible addition–fragmentation chain transfer) miniemulsion polymerization was engaged to engineer latex particle morphology. With this approach, a macromolecular amphiphilic RAFT agent with epoxy groups was synthesized that assembled onto the surface of monomer mini-droplets. It caused the polymer chains to grow inwards gradually in particles as polymerization proceeded. The batch polymerization of n-butyl acrylate (BA) followed by addition of styrene (St) led to the formation of PBA-b-PSt diblock copolymer shell–core latex, where epoxy groups were enriched on the particle surface. The shell–core ratio was varied feasibly by changing the mass of St. When the structured latexes were dried, epoxy groups underwent efficient curing reactions triggered by a thermal-latent curing agent (dicyandiamide) in a controlled manner, leading to the formation of bonded PBA blocks connecting the PSt blocks in adjacent particles. Mechanical tests show that the films behaved like ductile materials, whose modulus and elongation at break were functions of copolymer compositions. Furthermore, curing reaction was a very robust method of preserving film morphology which correlated well with that observed for the latex particles. The results demonstrated a feasible method of preparation of latex films with stable microphase separation structures and thus improved mechanical properties.  相似文献   

14.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

15.
The tensile properties of latex coatings were investigated with a set of custom formulated artist-type paints at an age of 1 year. All films in the study contained a poly(methyl methacrylate-cobutyl acrylate) binder exhibiting a glass-transition at approximately 10 °C. The viscoelastic behaviour of the latex matrix is first highlighted through a series of experiments involving different strain histories and temperatures. Influence of the inorganic particle concentration and geometry is then illustrated using TiO2 and calcined kaolin for the secondary phase. Experimental data from a wide range of conditions are summarised through master curves of secant modulus and failure strains using time–temperature superposition. The results indicate that the latex films behave in a rheologically simple manner and it is possible to predict the response outside of the experimental time-scale. An analysis by similar methods is also given for TiO2 pigmented films with/without surfactant removed by immersion in water. Differential scanning calorimetry and atomic force microscopy were also used in conjunction with mechanical tests. The combined findings suggest that a fraction of surfactant migrates to the TiO2 interface during film formation, where it interferes with adhesion of the acrylic matrix.  相似文献   

16.
Acrylic pressure sensitive adhesive (PSA) latexes were synthesized via a starved monomer-seeded semi-continuous emulsion polymerization process with butyl acrylate (BA), methyl methacrylate, acrylic acid (AA), 2-hydroxyethyl acrylate and trifunctional cross-linker, triallyl isocyanurate (TAIC). Influences of TAIC on the resultant latex and PSA properties were comprehensively investigated. The results indicated that latex particle size was independent of the amount of TAIC in the pre-emulsion feed, while the viscosity of the latex increased remarkably with TAIC content increased. Thermal gravimetric analysis result showed that the thermal stability of the polymers was improved significantly with the addition of TAIC. Besides, with the increase in TAIC content, gel content of the polymer increased significantly, while molecular weight between cross link points (Mc) and sol molecular weight (Mw, Mn) of the polymer decreased remarkably. Moreover, for the cross-linked adhesive film, the shear strength was improved greatly while at the sacrifice of loop tack and peel strength, when compared with the uncrosslinked counterparts. Finally, dynamic mechanical analysis and atomic force microscopy were also used to evaluate the viscoelastic properties and surface morphology of the acrylic emulsion PSA film, respectively.  相似文献   

17.
Structured latex particles with a slightly crosslinked poly(styrene‐n‐butyl acrylate) (PSB) core and a poly(styrene–methacrylate–vinyl triethoxide silane) (PSMV) shell were prepared by seed emulsion polymerization, and the latex particle structures were investigated with Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. The films that were formed from the structured core (PSB)–shell (PSMV) particles under ambient conditions had good water repellency and good tensile strength in comparison with films from structured core (PSB)–shell [poly(styrene–methyl methyacrylate)] latex particles; this was attributed to the self‐crosslinking of CH2?CH? Si(OCH2CH3)3 in the outer shell structure. The relationship between the particle structure and the film properties was also investigated in this work. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1824–1830, 2006  相似文献   

18.
周威  傅和青  颜财彬  陈焕钦 《化工学报》2013,64(6):2291-2299
引言水性聚氨酯相对溶剂型聚氨酯具有不燃、气味小、不污染环境等优点[1-2],从而广泛用于涂料[3]、胶黏剂[4]、油墨[5]等领域。目前,常用于软包装领域的薄膜主要是表面能很低的非极性膜,而水性聚氨酯胶黏剂具有较高的表面自由能,对非极性膜的润湿性差,因此需要降低水性聚氨酯的表面张力,达到润湿非极性膜的目的。  相似文献   

19.
Two groups of polyacrylate latexes with higher (21 ~ 35 °C) or lower (−33 ~ −43 °C) glass transition temperatures (Tg) were prepared by adjusting the monomer ratio of butyl acrylate (BA) and styrene (St), and the effect of acrylic acid (AA) on water-whitening resistance of these latex films was investigated. It was found that the water-whitening resistance of the two groups of latex films was different. With the increase of AA content, the water whitening resistance of the latex films with higher Tg continued to improve, while that of the latex films with lower Tg increased first and then decreased. A series of characterizations, such as light transmittance, water whitening, water absorption, static water contact angle, surface morphology, and optical microscope test of the latex film, and so forth, showed that the reason for this difference was that under higher AA content (≥5%), compared with the polyacrylate latex films with lower Tg, the latex films with higher Tg could reach the saturation state of water absorption quickly, and water in these latex films exhibited continuous and large area distribution, rather than formation of many so-called micro- or nano-scale water sacs that can scatter light as found in the latex films with lower Tg.  相似文献   

20.
In this article, silica sol (diameter: 8–100 nm) and polymer latex (Tg < 25°C) were mixed and dried at room temperature to prepare nanocomposite films with high silica load (≥50 wt %). Effects of silica size, silica load, and the Tg of the polymer on the film‐forming behavior of the silica/polymer latex blend were investigated. The transparency, morphology, and mechanical properties of the nanocomposite films were examined by UV–Vis spectroscopy, SEM, and nanoindentation tests, respectively. Transparent and crack‐free films were produced with silica loads as high as 70 wt %. Thirty nanometers was found to be the critical silica size for the evolution of film‐forming behavior, surface morphology, and mechanical properties. Colloidal silica particles smaller than this critical size act as binders to form strong silica skeleton. This gives the final silica/polymer nanocomposite film its porous surface and high mechanical strength. However, silica particles with sizes of 30 nm or larger tend to work as nanofillers rather than binders, causing poor mechanical strength. We also determined the critical silica load appeared for the mechanical strength of silica/polymer film at high silica load. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号