首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly-m-aminophenol (PMAP) films were synthesized using cyclic voltammetric (CV), chronoamperometric (CA) and chronopotentiometric (CP) methods in basic hydro-alcoholic medium on mild steel (MS). The structure and properties of these films were characterized by FTIR, UV–vis and scanning electron microscopy (SEM). SEM microphotographs reveal that the surface of MS was coated with PMAP films using CV, CP and CA methods. Some pinholes were seen in the SEM microphotograph of PMAP films prepared using CP method. The anti-corrosion behavior of PMAP films synthesized by CV, CA and CP has been investigated in 3.5% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that PMAP films synthesized by CV and CA methods are much more effective in reducing the corrosion of MS than PMAP films synthesized by CP method. Corrosion performance of these films arises from the barrier effect for the diffusion of O2.  相似文献   

2.
Poly(aniline-co-p-aminophenol) (copolymer) film was used as a sensor to determine the presence of catechol, taking advantage of the ability of the film to effectively catalyze the oxidation of catechol. The copolymer served as an electron transfer mediator between the electrode surface and catechol in the solution. The response current of the catechol sensor depended on the applied potential, pH and temperature at a given concentration of catechol. At optimum conditions, the catechol sensor displayed an excellent electrocatalytic response to the detection of catechol in a concentration range from 5 to 500 μM with a detection limit of 0.8 μM. The effects of selected organic compounds on the response of the catechol sensor were studied. Together, these findings show that the catechol sensor exhibits a better selectivity towards interfering species and a better operational and storage stability.  相似文献   

3.
Poly(o-anisidine)-dodecylbenzenesulfonate (POA-DBSA) coatings were synthesized on stainless steel from aqueous solution containing o-anisidine and dodecylbenzene sulfonic acid by using cyclic voltammetry. These coatings were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry (CV). Corrosion tests of these coatings were carried out in aqueous 3% NaCl solution by using open circuit potential (OCP) measurements, potentiodynamic polarization technique, cyclic potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). The results reveal that POA-DBSA acts as a corrosion protective coating on steel and reduces the corrosion rate (CR) of steel almost by a factor of 14.5.  相似文献   

4.
Electropolymerization of aniline on poly(o-aminophenol)(POAP)-coated gold and indium-doped tin oxide (ITO)-coated glass electrodes yields polyaniline(PANI)/POAP two-layer composite films, exhibiting reversible redox functions in aqueous acidic solution. The PANI deposition on the POAP-coated electrodes was monitored by cyclic voltammetry (CV) and in situ UV-vis spectroelectrochemistry. CV results show that PANI/POAP composite films exhibit better stability as compared to PANI films during potential cycling in aqueous acidic solutions. Characteristic UV-vis and Raman features of the composite films have been identified and their dependencies on the electrode potential are discussed. They were significantly different from the corresponding spectral characteristics of PANI and POAP films alone.  相似文献   

5.
Poly(o-ethoxyaniline) (POEA) coatings were synthesized on copper (Cu) by electrochemical polymerization of o-ethoxyaniline in aqueous salicylate solution by using cyclic voltammetry. These coatings were characterized by cyclic voltammetry, UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The performance of POEA as protective coating against corrosion of Cu in aqueous 3% NaCl was assessed by the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The results of the potentiodynamic polarization and EIS studies demonstrate that the POEA coating has ability to protect the Cu against corrosion. The corrosion potential was about 0.330 V versus SCE more positive in aqueous 3% NaCl for the POEA coated Cu than that of uncoated Cu and reduces the corrosion rate of Cu almost by a factor of 140.  相似文献   

6.
Young Gyu Jeong  Sang Cheol Lee 《Polymer》2004,45(10):3321-3328
The effect of flexible chain length on the thermal and mechanical properties such as melting temperature, glass transition temperature, dynamic mechanical relaxation behavior, and uniaxial tensile deformation for melt-quenched poly(m-methylene 2,6-naphthalate) (PmN) films was investigated using differential scanning calorimeter (DSC), dynamic mechanical thermal analyzer, and universal tensile machine. It was found from DSC thermograms that PmNs with even number of methylene group have higher melting temperatures and faster crystallization rates than PmNs with odd number of methylene group, showing an odd-even fluctuation. The plots of versus temperature show that all PmN samples have three relaxation processes (β, β, and α) regardless of the number of methylene group in their backbone. It was found that both β- and α-relaxations are cooperative processes and that the activation energies of both relaxations as well as the glass transition temperature associated with the α-relaxation show odd-even fluctuations as a function of the number of methylene group. The initial tensile modulus at the low drawing rate of 0.15 cm/min also shows an odd-even fluctuation. In summary, the macroscopic thermal and mechanical properties of PmN such as melting temperature, glass transition temperature, crystallization rate, activation energies of α- and β-relaxations, and initial modulus measured under a slow drawing rate exhibit odd-even fluctuations as the number of methylene group in PmN increases.  相似文献   

7.
Electroactive copolymers of aniline and o-aminophenol (OAP) with varying concentration ratios prepared by potential cycling in acidic aqueous solutions of the monomers on indium-doped tin oxide (ITO) coated glass and gold electrodes were studied with in situ UV-vis and Raman spectroscopy. Characteristic UV-vis and Raman features have been identified and their dependencies on the electrode potential are discussed. Spectroelectrochemical results reveal the formation of polyaniline-based copolymers at low concentration of OAP in the feed but incorporation of more OAP units into the copolymer with higher concentration of OAP in the comonomer feed. Spectroelectrochemical features are significantly different from those of both homopolymers.  相似文献   

8.
Poly(N-ethylaniline) (PNEA) coatings were grown by cyclic voltammetry technique on copper from 0.1 M N-ethylaniline (NEA) in 0.3 M oxalic acid solution. The optimum conditions (e.g. upper potential limit, scan rate and cycle number) effect on corrosion performance of synthesized PNEA films were determined in order to obtain best protection results against corrosion. The electrodeposited coatings were characterized by cyclic voltammetry (CV), Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy and scanning electron microscopy (SEM). Redox parameters were found after electrochemical tests and results of stability tests of these films impart an electroactive behavior that is composed of both diffusion control and thin film behavior. In addition, corrosion performance of PNEA coatings were investigated in 0.1 M H2SO4 by Tafel extrapolation and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

9.
The shear induced crystallization of the poly(m-xylylene adipamide) (MXD6) which is a semi-aromatic polyamide, was studied for a virgin (PA1) and a nucleated (PA2) grades using a shearing hot stage coupled with a microscope. Half crystallization times were measured according to the crystallization conditions (crystallization temperature, shear rate and shearing time). The effect of shear on the crystallization kinetics was shown by a strong decrease of the crystallization times for both materials. PA2 sensitivity to shear was much lower than that of PA1. This was attributed to the presence of nucleating agents which increased the primary nucleation density in the unsheared quiescent melt, leading to a higher necessary shear rate to overcome the quiescent nucleation. Kinetic models were proposed to predict the crystallization process as a function of the crystallization conditions. They were based on both Avrami and Hoffman-Lauritzen theories and modified to take into account the effect of shear. In the model the nucleation rate of the crystalline entities was related to the shear rate by a power function. Besides, crystalline morphology and orientation were studied by wide and small angle X-ray scattering to confirm the orientation effect of the shear in the crystalline part of the material.  相似文献   

10.
The poly(o-anisidine-co-o-toluidine) coatings were synthesized on copper substrates by electrochemical copolymerization of o-anisidine with o-toluidine using sodium salicylate as supporting electrolyte. These coatings were characterized by cyclic voltammetry, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and scanning electron microscopy (SEM). The formation of the copolymer with the mixture of monomers in the aqueous sodium salicylate solution was ascertained by a critical comparison of the results obtained with the polymerization of the individual monomers, o-anisidine and o-toluidine, respectively. The corrosion protection aspects of poly(o-anisidine-co-o-toluidine) coatings to copper was investigated in aqueous 3% NaCl solution by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The results of the potentiodynamic polarization measurements and EIS studies showed that the poly(o-anisidine-co-o-toluidine) coatings provided the effective corrosion protection to copper than that of respective homopolymers. The corrosion rate is observed to depend on the feed ratio of o-toluidine used for the synthesis of the copolymer coatings.  相似文献   

11.
A new synthetic method for the preparation of poly(benzoxazole) (PBO) precursor, poly(o-hydroxyamide) (7) from bis(o-aminophenol) (5) and diphenyl isophthalate (6) has been developed. Polymer 7 was prepared by the polycondensation of 5 and 6 in 1-methyl-2-pyrrolidinone (NMP) at 185-205 °C. Model reactions were carried out in detail to elucidate appropriate conditions for the formation of 2-hydroxybenzanilide (3) from o-aminophenol (1) and phenyl benzoate (2). The photosensitive (PBO) precursor based on polymer 7 containing a 22% of benzoxazole unit and 30 wt% 1-{1,1-bis[4-(2-diazo-1-(2H)naphthalenone-5-sulfonyloxy)phenyl]ethyl}-4-{1-[4-(2-diazo-1(2H)naphthalenone-5-sulfonyloxy)phenyl]methylethyl}benzene (S-DNQ) showed a sensitivity of 110 mJ cm−2 and a contrast of 5.0 when it was exposed to 436 nm light followed by developing with a 2.38 wt% aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 8 μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm−2 of UV-light at 436 nm by the contact mode.  相似文献   

12.
Electroactive copolymers of m-toluidine (MT) and o-phenylenediamine (OPD) were prepared electrochemically in aqueous sulfuric acid by potential cycling and characterized with cyclic voltametry, in situ conductivity measurements and FT-IR spectroscopy. The voltammograms of the copolymers exhibit different behavior for different concentrations of OPD in the comonomer feed. At optimum conditions the resulting poly(OPD-co-MT) shows an extended useful potential range of the redox activity as compared to the corresponding homopolymers. The effect of scan rate and pH on the electrochemical activity was studied. The copolymer was electrochemically active even at pH 8.0. The stability of the copolymer film was also tested. The copolymer has a potential region of maximum conductivity different from that of PMT and POPD. The conductivity of the copolymer is between the conductivity of the homopolymers. The vibrational bands at 3122/3450 and 2922/875 cm−1 in the FT-IR spectra of the copolymer indicate the presence of both OPD and MT units, respectively, in the copolymer backbone.  相似文献   

13.
Salma Bilal 《Electrochimica acta》2007,52(17):5346-5356
Results of in situ UV-vis spectroelectrochemical studies of the electropolymerization of o-phenylenediamine (OPD), m-toluidine (MT) and the copolymerization of OPD with MT are reported. Electropolymerization was performed in aqueous acidic medium at a constant potential of ESCE = 1.0 V at an indium doped tin oxide (ITO) coated glass electrode. The course of homopolymerization was followed for MT and OPD solutions with various monomer concentrations. The spectral characteristics of the mixed solutions were studied at a constant concentration of MT and various concentrations of OPD in the comonomer feed. An absorption band at λ = 497 nm was assigned to the head-to-tail mixed dimer/oligomer resulting from the cross reaction between OPD and MT cation radicals. UV-vis spectra recorded during copolymerization show dependence of the growth of the band at λ = 497 nm on OPD concentration in the feed. At lower OPD feed concentration it appears as the major band in the corresponding spectra. The UV-vis spectra recorded for the copolymer films suggest the incorporation of both monomer units in the copolymer. The FT-IR spectra of the copolymers show the presence of phenazine type structures in the copolymer backbone.  相似文献   

14.
For the first time, poly (o-anisidine-co-metanilic acid) (PASM) was deposited on mild steel substrate by electrochemical polymerization of o-anisidine and metanilic acid monomers in aqueous solution of 0.1 M H2SO4. The electrochemical polymerization of o-anisidine takes place in the presence of metanilic acid monomer and uniform, strongly adherent coating was obtained on the substrate. The electroactivity of copolymer was studied by cyclic voltammetry and AC impedance techniques. There is an increasing anodic current due to oxidation of metanilic acid monomer at the surface of the electrode when the applied potential is cycled from −0.2 V to 0.8 V. These deposits were characterized by Fourier transform infrared (FTIR) spectroscopy, UV-vis and TG/DTA techniques. The effect of various concentrations of PASM copolymer solution in acid rain corrosive media has been studied through potentiodynamic polarization, AC impedance and I-E curve methods. The soluble form of polymeric solution provided better anti-corrosive behavior in artificial acid rain solution.  相似文献   

15.
A conformational energy analysis of the isolated chain of syndiotactic poly(m-methylstyrene) under the constraint of a crystalline field is reported. Two different minimum energy conformations having similar energy have been found; the trans-planar conformation with tcm symmetry and the two-fold helical conformation with s(2/1)2 symmetry, according with the observed polymorphic behavior of this polymer. The calculated chain axes are in agreement with the experimental axes of 5.1 and 7.9 Å found for the different polymorphic forms of syndiotactic poly(m-methylstyrene). However, only a metastable disordered modification (form III) having chains in trans-planar conformation has been described. This indicates that, even though the trans-planar conformation is, in the isolated chain as stable as the helical conformation, the packing of the chains in helical conformation is probably more efficient than that of the trans-planar chains.  相似文献   

16.
Poly(o-tolidine), PoT, film was prepared by electrochemical oxidation of the monomer, oT, in 0.1 M HCl + 0.1 M KClO4. The presence of KClO4 in the formation medium was found to be essential for the electropolymerization process to proceed. Increasing the upper potential limit up to +1.5 V, instead of +1.0 V, leads to appearance of a new anodic peak at +1.36 V and enhancement of the polymer formation of PoT without changing the film structure. The electrochemical behavior of the formed polymer films was investigated in 1.0 M HClO4. The kinetic parameters were calculated from the values of the charge consumed during the electropolymerization process. The rate of the polymerization reaction was found to depend on the concentration of the monomer rather than the electrolyte. The polymerization rate is first order with respect to the monomer concentration and zero order with respect to the electrolyte. The electrolyte plays no active role in the kinetics of the electropolymerization process and its role is most likely limited to polymer doping.  相似文献   

17.
A comparative discussion of the electrochemical and spectroelectrochemical properties of poly(o-toluidine) POT, a methyl substituted derivative of polyaniline, PANI, is presented. POT exists in various oxidation states and shows an insulator to conductor transition when doped by electrooxidation. The transformation of the polymer film from its non-conducting leucoemeraldine to its conducting emeraldine state and further on to its again non-conducting pernigraniline form was observed with different techniques including cyclic voltammetry, in situ conductivity measurements and in situ UV-vis and Raman spectroelectrochemical methods. Results reveal that POT shows a good correlation between its electrochemical and spectroelectrochemical properties in its different oxidation states.  相似文献   

18.
E.M Woo  I.-C ChoL.-T Lee 《Polymer》2002,43(15):4225-4230
Rare upper critical solution temperature (UCST) behavior was found and experimentally demonstrated in the blend comprising poly(2,6-dimethyl p-phenylene oxide) with poly(4-methyl styrene) (PPO/P4MS). Complexity of phase behavior in the PPO/P4MS system has caused puzzling analyses in the past years. This study re-investigated and clarified past mis-interpretations related to this interesting blend system. This study concluded that the PPO/P4MS blend is an immiscible system at ambient, which, however, turns into a miscible phase with UCST behavior at higher temperatures. With the finding of UCST in the PPO/P4MS blend, a critical contribution of this work was to resolve the conflicting arguments that have gone on for a long time in determination and interpretation of the thermodynamic phase behavior of PPO/P4MS. Phase behavior with UCST in the PPO/P4MS blend system and its interpretation were supported with clear experimental evidence.  相似文献   

19.
Mechanical properties of miscible blends of high molecular weight poly(N-vinyl pyrrolidone) (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) of molecular weight 400 g/mol have been examined as a function of PVP-PEG composition and degree of hydration. The small-strain behavior in the linear elastic region has been evaluated with the dynamic mechanical analysis and compared with the viscoelastic behavior of PVP-PEG blends under large strains in the course of uniaxial drawing to fracture and under cyclic extension. A strong decoupling between the small-strain and the large strain properties of the blends has been observed, indicative of a pronounced deviation from rubber elasticity in the behavior of the blends. This deviation, also seen on tensile tests under fast drawing, is attributed to the peculiar phase behavior of the blends and the molecular mechanism of PVP-PEG interaction. Nevertheless, for the PVP blend with 36% PEG, under comparatively low extension rates, the reversible contribution to the total work of deformation up to ε=300% has been found to be maximum at around 70%, while the blends containing 31 and 41% PEG behave rather as an elastic-plastic solid and a viscoelastic liquid, respectively.  相似文献   

20.
R. Patil 《Electrochimica acta》2004,49(26):4687-4690
Mobilities of charge carriers in poly(o-methylaniline) (PMA) and poly(o-methoxyaniline) (PMOA) films are electrochemically determined over a range of oxidation stages of the polymer films. In the low oxidation region, mobilities of both the polymers are comparable to that of polyaniline (PANI). In the high oxidation region, however, mobility values systematically decrease in the order of PANI > PMA > PMOA, showing that the bulky groups present at the ortho position play a more important role in the high oxidation region. The low mobilities of charge carriers in the high oxidation region explain why PMA and PMOA are less conducting than PANI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号