首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-methoxybenzene)triazene (MBT) for highly selective determination of mercury(II) has been developed. The electrode showed a good Nernstian response (30.2 ± 0.3 mV decade− 1) over a wide concentration range (1.0 × 10− 7−1.0 × 10− 2 mol L− 1). The limit of detection was 5.0 × 10− 8 mol L− 1. The electrode has a response time about 15 s and can be used for at least 1 month without observing any deviation from Nernstain response. The proposed electrode revealed an excellent selectivity toward mercury(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.6–4.2. The electrode was used in the determination of Hg2+ in aqueous samples and as an indicator electrode in potentiometric titration of Hg(II) ions.  相似文献   

2.
In this paper, glucose biosensor is fabricated with immobilization of glucose oxidase (GOx) in platinum and silica sol. The glucose biosensor combined with Pt and SiO2 nanoparticles could make full use of the properties of nanoparticles. A set of experimental results indicates that the current response for the enzyme electrode containing platinum and silica nanoparticles increases from 0.32 µA cm− 2 to 33 µA cm− 2 in the solution of 10 mM β-D-glucose. The linear range is 3 × 10− 5 to 3.8 × 10− 3 M with a detection limit of 2 × 10− 5 M at 3σ. The effects of the various volume ratios of Pt and SiO2 sols with respect to the current response and the stability of the enzyme electrodes are studied.  相似文献   

3.
P.H. Tai  C.H. Jung  Y.K. Kang  D.H. Yoon   《Thin solid films》2009,517(23):129-6297
12CaO·7Al2O3 electride (C12A7:e) doped indium tin oxide (ITO) (ITO:C12A7:e) thin films were fabricated on a glass substrate by an RF magnetron co-sputtering system with increasing number of C12A7:e chips (from 1 to 7) and at various oxygen partial pressure ratios. The optical transmittance of the ITO:C12A7:e thin film was higher than 70% in the visible wavelength region. In the electrical properties of the thin film, a decrease of the carrier concentration from 2.6 × 1020 cm− 3 to 2.1 × 1018 cm− 3 and increase of the resistivity from 1.4 × 10− 3 Ω cm to 4.1 × 10− 1 Ω cm were observed with increasing number of C12A7:e chips and oxygen partial pressure ratios. It was also observed that the Hall mobility was decreased from 17.27 cm2·V− 1·s− 1 to 5.13 cm2·V− 1·s− 1. The work function of the ITO thin film was reduced by doping it with C12A7:e.  相似文献   

4.
(Ba0.32Sr0.68)5Nb4O15 crystal with sizes of Ø 17 × 35 mm was grown successfully by Czochralski technique method. The thermal anisotropy was discussed. The principal coefficients of thermal expansion along (100), (010), (001) directions were precisely measured to be 1.308 × 10− 5, 1.288 × 10− 5, 1.478 × 10− 5 K− 1, respectively. Its optical transparency range has been measured and found to span from 323 to 5500 nm. The bands present in the IR spectra were identified and assigned to the corresponding vibration modes of NbO6 anions.  相似文献   

5.
Tungsten trioxide (WO3) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 °C and 400 °C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO3 films are formed after calcination at 250 °C for both processing routes; however, the coatings that calcined at 400 °C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 °C and 400 °C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62–2.74 × 10− 3 (mC cm− 2) for APTA coatings; and 0.35–1.62 × 10− 3 (mC cm− 2) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.  相似文献   

6.
Transparent, conducting, Al-doped ZnO films have been deposited, by dc and pulsed dc magnetron sputtering, on glass and electroactive polymer (poly(vinylidene fluoride)–PVDF) substrates. Samples have been prepared at room temperature varying the argon sputtering pressure, after optimizing other processing conditions. All ZnO:Al films are polycrystalline and preferentially oriented along the [002] axis. Electrical resistivity around 3.3 × 10− 3 Ω cm and optical transmittance of ~ 85% at 550 nm have been obtained for AZOY films deposited on glass, while a resistivity of 1.7 × 10− 2 Ω cm and transmittance of ~ 70% at 550 nm have been attained in similar coatings on PVDF. One of the main parameters affecting film resistivity seems to be the roughness of the substrate.  相似文献   

7.
We investigated the effects of a high density O2 plasma treatment on the structural and electrical properties of sputter-deposited GZO films. The GZO films were deposited on polyimide substrate without substrate heating by RF magnetron sputtering from a ZnO target mixed with 5 wt.% Ga2O3. Prior to the GZO film growth, we treated a polyimide substrate with highly dense inductively coupled oxygen plasma. The optical transmittance of the GZO film, about 80%, was maintained regardless of the plasma pre-treatment. However, the resistivity of the film was strongly influenced by the plasma pre-treatment. The resistivity of the GZO film decreased from 1.02 × 10− 2 Ω cm without an O2 plasma pre-treatment to 1.89 × 10− 3 Ω cm with an O2 plasma pre-treatment.  相似文献   

8.
A series of recently synthesized benzo- and pyridine-substituted macrocyclic diamides were studied to characterize their abilities as lead ion carriers in PVC membrane electrodes. The electrode based on 3,15,21-triaza-4,5;13,14-dibenzo-6,9,12-trioxabicycloheneicosa-1,17,19-triene-2,16-dione exhibits a Nernstian response for Pb2+ ions over a wide concentration range (1.3 × 10−2 to 3.6 × 10−6 mol L−1) with a limit of detection of 2.0 × 10−6 mol L−1 (0.4 ppm). The response time of the sensor is 16 s, and the membrane can be used for more than two months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many cations including alkali earth, transition and heavy metal ions. The proposed sensor could be used in pH range of 3.7–6.5. It was used as an indicator electrode in potentiometric titration of chromate ions with a lead ion solution.  相似文献   

9.
Y.P. Han  H.A. Ye  W.Z. Wu  G. Shi 《Materials Letters》2008,62(17-18):2806-2809
Ag and Cu nanowires were separately fabricated in a direct current electric field using a solid-state ionic method, and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their optical nonlinearities induced by 8 ns laser pulses from a frequency-doubled, Nd:YAG laser at 532 nm, were investigated using the Z-scan technique. Experimental results indicate the metal nanowires have obvious positive refractive nonlinearities and reverse saturated absorption behaviors. The self-focusing behaviors of Ag and Cu nanowires can be attributed to Kerr-induced self-focusing of laser radiation, the nonlinear refractive indexes of Ag and Cu nanowires are n2 = 1.7 × 10 11 esu and n2 = 2.4 × 10 11 esu respectively, and the two-photon process of Ag and the one-photon process of Cu are responsible for the difference between Ag and Cu nanowires suspended in de-ionized water in nanosecond nonlinear absorptions.  相似文献   

10.
This paper deals with electrochemical behaviour of Cu24Zn5Al alloy in a sodium tetraborate solution (borax), in the presence of chloride ions and benzotriazole. It was found that during anodic polarization of the investigated alloy, in a sodium tetraborate solution, at lower potentials, copper (I)-oxide formed on the alloy surface. The voltammograms show peak potential shifts corresponding to the formation of Cu2O towards more positive values with longer immersion time. It was found that chloride ions had an activating effect in a sodium tetraborate solution containing various concentrations of chloride ions (0.001, 0.005, 0.010, 0.050 and 0.100 mol dm−3 Cl). It was observed that Cu24Zn5Al alloy corroded more intensely in more concentrated solutions and with longer exposure to Cl. Investigations of the effect of inhibitor concentrations (8.4 × 10−6, 8.4 × 10−5, 8.4 × 10−4 and 8.4 × 10−3 mol dm−3 BTA in 0.1 mol dm−3 borax solution) showed that BTA had a good protective effect. The inhibiting effect of BTA was also confirmed with various times of immersion of this alloy in a 1.7 × 10−2 mol dm−3 solution of this inhibitor.  相似文献   

11.
The transparent and conductive gallium-doped zinc oxide (GZO) film was deposited on 1737F Corning glass using the radio-frequency (RF) magnetron sputtering system with a GZO ceramic target. (The Ga2O3 contents are approximately 5 wt. %). In this study, the effect of the sputtering pressure on the structural, optical and electrical properties of GZO films upon the glass or polyester film (PET) substrate was investigated and discussed in detail. The GZO film was grown under a steady RF power of 400 W and a lower substrate temperature from room temperature up to 200 °C. The crystal structure and orientation of GZO thin films were examined by X-ray diffraction. All of the GZO films under various sputtering pressures had strong c-axis (002)-preferred orientation. Optical transparency was high (> 80%) over a wide spectral range from 380 nm to 900 nm. According to the experimental data, the resistivity of a single-layered GZO film was optimized at  8.3 × 10− 4 Ω cm and significantly influenced by the sputtering pressure. In further research, the sandwich structure of the GZO film/Au metal/GZO film was demonstrated to improve the electrical properties of the single-layered GZO film. The resistivity of the sandwich-structured GZO film was around 2.8 × 10− 4 Ω cm.  相似文献   

12.
In this work, determination of cadmium(II) using square wave voltammetry (SWV) was described. The method is based on accumulation of these metal ions on kaolin platinum electrode (K/Pt). The K/Pt performance was optimized with respect to the surface modification and operating conditions. The optimized conditions were obtained in pH of 5.0 and accumulation time of 25 min. Under the optimal conditions, the relationship between the peak current versus concentration was linear over the range of 9 × 10−8 to 8.3 × 10−6 mol L−1. The detection limit (DL, 3σ) was 5.4 × 10−9 mol L−1. The analytical methodology was successfully applied to monitor the Cd(II) content in natural water. Interferences were also evaluated.  相似文献   

13.
Xi Chen 《Thin solid films》2009,517(8):2787-1224
Polyacrylamide (PAM), sodium dodecyl sulfate (SDS) and cytochrome c (Cyt c) were immobilized on the surface of a glass carbon electrode (GCE), respectively, to form a Cyt c /SDS/PAM/GCE. The modified electrode was characterized with the electrochemical impedance. The direct electrochemical behaviors of Cyt c on SDS/PAM/GCE were obtained by using cyclic voltammetry. A pair of well-defined and reversible redox peaks could be observed in a 0.10 M pH 7.0 phosphate buffer solution. The anodic and cathodic peak potentials of Cyt c were at 0.051 V and − 0.003 V (vs. Ag/AgCl), respectively. The Cyt c on SDS/PAM/GCE exhibited well electrocatalytic activity to reduction of nitric oxide. The relative electrochemical parameters were obtained. The resulted electrode displayed a rapid amperometric response to the reduction of nitric oxide. The catalytic current is linear to the nitric oxide concentration in the range of 8.0 × 10− 7 M to 9.5 × 10− 5 M and the detection limit was 1.0 × 10− 7 M (Signal/Noise = 3). The proposed biosensor could be used to detect quantitatively nitric oxide.  相似文献   

14.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

15.
A Micro-Slicer Image Processing System (MSIPS) has been applied to observe the ice crystal structures formed in frozen dilute solutions. Several characteristic parameters were also proposed to investigate the three-dimensional (3-D) morphology and distribution of ice crystals, based on their reconstructed images obtained by multi-slicing a frozen sample with the thickness of 5 μm. The values of characteristic parameters were determined for the sample images with the dimension of 530×700×1000 μm. The 3-D morphology of ice crystals was found to be a bundle of continuous or dendrite columns at any freezing condition. The equivalent diameter of ice crystals were in the range of 73–169 μm, and decreased exponentially with increasing freezing rate at the copper cooling plate temperature of −20 to −80 °C. At the Tcp −40 °C, the volumes of ice crystals were in the range of 4.6×104 μm3 to 3.3×107 μm3, and 36 ice columns were counted in the 3-D image.  相似文献   

16.
The present work was made to investigate the effect of oxygen pressure of SiOx layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiOx buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiOx layer as a buffer, the electrical resistivity of GZO/SiOx/PET films gradually decreased from 7.6 × 10− 3 to 6.8 × 10− 4 Ω·cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiOx buffer layers. In addition, the average optical transmittance of GZO/SiOx/PET films in a visible regime was estimated to be ~ 90% comparable to that of GZO deposited onto a glass substrate.  相似文献   

17.
The Energy-Dispersive-X-ray-based permeation and oxidation test has been further developed by an improved theoretical analysis, in which chemical potential gradients rather than concentration gradients are employed. The developed test is able to characterize diffusion kinetics in diffusion barriers at the nanometer scale. The Cu flux coefficient in (Cu, Ni)3Sn intermetallic compound nanolayers was determined from the test to be 8.48 × 10− 15 mol·(m·s·J/mol)–1 exp(− 52.3 kJ·mol− 1/RT) in a temperature range of 250 °C–400 °C.  相似文献   

18.
We realize a nonvolatile and rewritable memory effect in an organic field-effect transistor (OFET) structure using polymethylmethacryrate (PMMA) dispersed with 10-methyl-9-phenylacridinium perchlorate (MPA+ClO4) as a gate dielectric. Applying a voltage between a top source-drain electrode and a bottom gate electrode induces electrophoresis of two ions of MPA+ and ClO4 towards the corresponding electrodes in the memory devices. The drain currents of the memory devices markedly increase from 10− 9 A to 10− 2 A under no gate voltage condition due to the strong space charge polarization effect. Our memory devices have excellent electrical bistability and retention characteristics, i.e. the memory on/off ratio reached 107 and the drain current maintained 40% of the initial value after 104 s.  相似文献   

19.
Undoped and Sn-doped CdO thin films were prepared by the chemical bath deposition method by means of a procedure that improves the deposition efficiency. All as-grown films were crystallized in the cubic structure of cadmium peroxide (CdO2) and transformed into CdO with a cubic structure after an annealing process. The as-grown films have a high resistivity (> 106 Ω cm) and an optical bandgap around 3.6 eV. Undoped CdO displays an optical bandgap around 2.32–2.54 eV and has an electrical conductivity of 8 × 10− 4 Ω cm. The Sn incorporation into CdO produces a blue shift in the optical bandgap (from 2.55 to 2.84 eV) and a decrease in the electrical conductivity.The deposition procedure described here gives colloid-free surface thin films as indicated by the surface morphology analysis.  相似文献   

20.
Plastic deformation behavior of dual-phase Ni–31Al intermetallics at elevated temperature was examined. It was found that the alloy exhibited good plasticity under an initial strain rate of 1.25 × 10−4 s−1 to 8 × 10−3 s−1 in a temperature range of 950–1075 °C. A maximum elongation of 281.3% was obtained under an initial strain rate of 5 × 10−4 s−1 at 1000 °C. The strain rate sensitivity, m value was correlated with temperature and initial strain rate, being in the range of 0.241–0.346. During plastic deformation, both the two phases Ni3Al and NiAl in dual-phase Ni–31Al could co-deform without any void formation or debonding, the initial coarse microstructure became much finer after plastic deformation. Dislocation played an important role during the plastic deformation in dual-phase Ni–31Al alloy, the deformation mechanism in dual-phase Ni–31Al could be explained by continuous dynamic recovery and recrystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号