首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The research outlined in this paper is part of a wider research program named SYSCOLAG (Coastal and LAGoonal SYStems in Languedoc-Roussillon area, France) dedicated to sustainable coastal management. The main objective of this program is to build up a communication infrastructure to improve the exchange of information and knowledge between the various scientific disciplines involved in the research. In order to ensure the sharing of resources without affecting the autonomy and independance of the partners, we propose a three-level infrastructure (resources, federation and knowledge access) based on a metadata service (using ISO 19115 standard for geographic information metadata) completed by a common vocabulary (ontology).The Syscolag research program (COastal and LAGoonal SYStems) is funded by Languedoc Roussillon authority.Julien Barde is currently a Ph.D. student in Computer Science at the LIRMM (the Computer Science, Robotic and Microelectronic Laboratory of the University of Montpellier II, France) under the guidance of Thérèse Libourel and Pierre Maurel since 2002. He works for a research program of Integrated Coastal Management to improve knowledge sharing between the stakeholders of Languedoc Roussillon coastal area. He has received his engineer/M.Sc. degrees in Oceanology Sciences and Spatial Information Treatment from the National Superior Agronomic School of Rennes (ENSAR, Brittany, France) in 2000 and 2001. He has experience in Computer Science, Remote sensing, GIS and oceanology.Thérèse Libourel is a Senior Lecturer in Computer Science from the Conservatoire National des Arts et Métiers (CNAM), currently at the LIRMM (the Computer Science, Robotic and Microelectronic Laboratory of the University of Montpellier II, France) since 1994. She holds a Ph.D. and a habilitation thesis in Computer Science from the University of Montpellier II (France). Among others, her research interests are oriented towards object oriented design, reuse of software components, object oriented databases and evolution, and data models for spatial and temporal information systems.Pierre Maurel is a research engineer in Cemagref (France). He received his Diploma on Agronomy Engineering from ESAP high school (France) in 1986 and his M.Sc. on quantitative geography in 1990 from Avignon University (France). In the past, he performed research and teaching in satellite image processing and GIS for environmental and water applications. His current scientific interests include the development of methods for the design of multi-partners geographic information systems, the use of metadata within Spatial Data Infrastructures and the integration of Geographic Information technologies to support public participation in the field of Integrated River Basin Management (HarmoniCOP European project).  相似文献   

2.
The recent increase in HyperText Transfer Protocol (HTTP) traffic on the World Wide Web (WWW) has generated an enormous amount of log records on Web server databases. Applying Web mining techniques on these server log records can discover potentially useful patterns and reveal user access behaviors on the Web site. In this paper, we propose a new approach for mining user access patterns for predicting Web page requests, which consists of two steps. First, the Minimum Reaching Distance (MRD) algorithm is applied to find the distances between the Web pages. Second, the association rule mining technique is applied to form a set of predictive rules, and the MRD information is used to prune the results from the association rule mining process. Experimental results from a real Web data set show that our approach improved the performance over the existing Markov-model approach in precision, recall, and the reduction of user browsing time. Mei-Ling Shyu received her Ph.D. degree from the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN in 1999, and three Master's degrees from Computer Science, Electrical Engineering, and Restaurant, Hotel, Institutional, and Tourism Management from Purdue University. She has been an Associate Professor in the Department of Electrical and Computer Engineering (ECE) at the University of Miami (UM), Coral Gables, FL, since June 2005, Prior to that, she was an Assistant Professor in ECE at UM dating from January 2000. Her research interests include data mining, multimedia database systems, multimedia networking, database systems, and security. She has authored and co-authored more than 120 technical papers published in various prestigious journals, refereed conference/symposium/workshop proceedings, and book chapters. She is/was the guest editor of several journal special issues. Choochart Haruechaiyasak received his Ph.D. degree from the Department of Electrical and Computer Engineering, University of Miami, in 2003 with the Outstanding Departmental Graduating Student award from the College of Engineering. After receiving his degree, he has joined the National Electronics and Computer Technology Center (NECTEC), located in Thailand Science Park, as a researcher in Information Research and Development Division (RDI). His current research interests include data/ text/ Web mining, Natural Language Processing, Information Retrieval, Search Engines, and Recommender Systems. He is currently leading a small group of researchers and programmer to develop an open-source search engine for Thai language. One of his objectives is to promote the use of data mining technology and other advanced applications in Information Technology in Thailand. He is also a visiting lecturer for Data Mining, Artificial Intelligence and Decision Support Systems courses in many universities in Thailand. Shu-Ching Chen received his Ph.D. from the School of Electrical and Computer Engineering at Purdue University, West Lafayette, IN, USA in December, 1998. He also received Master's degrees in Computer Science, Electrical Engineering, and Civil Engineering from Purdue University. He has been an Associate Professor in the School of Computing and Information Sciences (SCIS), Florida International University (FIU) since August, 2004. Prior to that, he was an Assistant Professor in SCIS at FIU dating from August, 1999. His main research interests include distributed multimedia database systems and multimedia data mining. Dr. Chen has authored and co-authored more than 140 research papers in journals, refereed conference/symposium/workshop proceedings, and book chapters. In 2005, he was awarded the IEEE Systems, Man, and Cybernetics Society's Outstanding Contribution Award. He was also awarded a University Outstanding Faculty Research Award from FIU in 2004, Outstanding Faculty Service Award from SCIS in 2004 and Outstanding Faculty Research Award from SCIS in 2002.  相似文献   

3.
When dealing with long video data, the task of identifying and indexing all meaningful subintervals that become answers to some queries is infeasible. It is infeasible not only when done by hand but even when done by using latest automatic video indexing techniques. Whether manually or automatically, it is only fragmentary video intervals that we can identify in advance of any database usage. Our goal is to develop a framework for retrieving meaningful intervals from such fragmentarily indexed video data. We propose a set of algebraic operations that includes ourglue join operations, with which we can dynamically synthesize all the intervals that are conceivably relevant to a given query. In most cases, since these operations also produce irrelevant intervals, we also define variousselection operations that are useful in excluding them from the answer set. We also show the algebraic properties possessed by those operations, which establish the basis of an algebraic query optimization. Katsumi Tanaka, D. Eng.: He received his B.E., M.E., and D.Eng. degrees in information science from Kyoto University, in 1974, 1976, and 1981, respectively. Since 1994, he is a professor of the Department of Computer and Systems Engineering and since 1997, he is a professor of the Division of Information and Media Sciences, Graduate School of Science and Technology, Kobe University. His research interests include object-oriented, multimedia and historical databases abd multimedia information systems. He is a member of the ACM, IEEE Computer Society and the Information Processing Society of Japan. Keishi Tajima, D.Sci.: He received his B.S, M.S., and D.S. from the department of information science of University of Tokyo in 1991, 1993, and 1996 respectively. Since 1996, he is a Research Associate in the Department of Computer and Systems Engineering at Kobe University. His research interests include data models for non-traditional database systems and their query languages. He is a member of ACM, ACM SIGMOD, Information Processing Society of Japan (IPSJ), and Japan Society for Software Science and Technology (JSSST). Takashi Sogo, M.Eng.: He received B.E. and M.E. from the Department of Computer and Systems Engineering, Kobe University in 1998 and 2000, respectively. Currently, he is with USAC Systems Co. His research interests include video database systems. Sujeet Pradhan, D.Eng.: He received his BE in Mechanical Engineering from the University of Rajasthan, India in 1988, MS in Instrumentation Engineering in 1995 and Ph.D. in Intelligence Science in 1999 from Kobe University, Japan. Since 1999 May, he is a lecturer of the Department of Computer Science and Mathematics at Kurashiki University of Science and the Arts, Japan. A JSPS (Japan Society for the Promotion of Science) Research Fellow during the period between 1997 and 1999, his research interests include video databases, multimedia authoring, prototypebased languages and semi-structured databases. Dr. Pradhan is a member of Information Processing Society of Japan.  相似文献   

4.
5.
This approach proposes the creation and management of adaptive learning systems by combining component technology, semantic metadata, and adaptation rules. A component model allows interaction among components that share consistent assumptions about what each provides and each requires of the other. It allows indexing, using, reusing, and coupling of components in different contexts powering adaptation. Our claim is that semantic metadata are required to allow a real reusing and assembling of educational component. Finally, a rule language is used to define strategies to rewrite user query and user model. The former allows searching components developing concepts not appearing in the user query but related with user goals, whereas the last allow inferring user knowledge that is not explicit in user model.John Freddy Duitama received his M.Sc. degree in system engineering from the University of Antioquia -Colombia (South America). He is currently a doctoral candidate in the GET – Institut National des Télécommunications, Evry France. This work is sponsored by the University of Antioquia, where he is assistant professor.His research interest includes semantic web and web-based learning systems, educational metadata and learning objects.Bruno Defude received his Ph.D. in Computer Science from the University of Grenoble (I.N.P.G) in 1986. He is currently Professor in the Department of Computer Science at the GET - Institut National des Télécommunications, Evry France where he leads the SIMBAD project (Semantic Interoperability for MoBile and ADaptive applications).His major field of research interest is databases and semantic web, specifically personalized data access, adaptive systems, metadata, interoperability and semantic Peer-to-peer systems with elearning as a privileged application area.He is a member of ACM SIGMOD.Amel Bouzeghoub received a degree of Ph.D. in Computer Sciences at Pierre et Marie Curie University, France.In 2000, she joined the Computer Sciences Department of GET-INT (Institut National des Telecommunications) at Evry (France) as an associate professor.Her research interests include topics related to Web-based Learning Systems, Semantic Metadata for learning resources, Adaptive Learning Systems and Intelligent Tutoring Systems.Claire Lecocq received an Engineer Degree and a Ph.D. in Computer Sciences respectively in 1994 and 1999. In 1997, she joined the Computer Sciences Department at GET-INT (Institut National des Télécommunications) of Evry, France, as an associate professor. Her first research interests included spatial databases and visual query languages. She is now working on adaptive learning systems, particularly on semantic metadata and user models.  相似文献   

6.
We propose a new encryption algorithm relying on reversible cellular automata (CA). The behavior complexity of CA and their parallel nature makes them interesting candidates for cryptography. The proposed algorithm belongs to the class of symmetric key systems. Marcin Seredynski: He is a Ph.D. student at University of Luxembourg and Polish Academy of Sciences. He received his M.S. in 2004 from Faculty of Electronics and Information Technology in Warsaw University of Technology. His research interests include cryptography, cellular automata, nature inspired algorithms and network security. Currently he is working on intrusion detection algorithms for ad-hoc networks. Pascal Bouvry, Ph.D.: He earned his undergraduate degree in Economical & Social Sciences and his Master degree in Computer Science with distinction (’91) from the University of Namur, Belgium. He went on to obtain his Ph.D. degree (’94) in Computer Science with great distinction at the University of Grenoble (INPG), France. His research at the IMAG laboratory focussed on Mapping and scheduling task graphs onto Distributed Memory Parallel Computers. Next, he performed post-doctoral researches on coordination languages and multi-agent evolutionary computing at CWI in Amsterdam. He gained industrial experience as manager of the technology consultant team for FICS in the banking sector (Brussels, Belgium). Next, he worked as CEO and CTO of SDC (Ho Chi Minh city, Vietnam) in the telecom, semi-conductor and space industry. After that, He moved to Montreal Canada as VP Production of Lat45 and Development Director for MetaSolv Software in the telecom industry. He is currently serving as Professor in the group of Computer Science and Communications (CSC) of the Faculty of Sciences, Technology and Communications of Luxembourg University and he is heading the Intelligent & Adaptive Systems lab. His current research interests include: ad-hoc networks & grid-computing, evolutionary algorithms and multi-agent systems.  相似文献   

7.
With the increasing popularity of the WWW, the main challenge in computer science has become content-based retrieval of multimedia objects. Access to multimedia objects in databases has long been limited to the information provided in manually assigned keywords. Now, with the integration of feature-detection algorithms in database systems software, content-based retrieval can be fully integrated with query processing. We describe our experimentation platform under development, making database technology available to multimedia. Our approach is based on the new notion of feature databases. Its architecture fully integrates traditional query processing and content-based retrieval techniques. Arjen P. de Vries, Ph.D.: He received his Ph.D. in Computer Science from the University of Twente in 1999, on the integration of content management in database systems. He is especially interested in the new requirements on the design of database systems to support content-based retrieval in multimedia digital libraries. He has continued to work on multimedia database systems as a postdoc at the CWI in Amsterdam as well as University of Twente. Menzo Windhouwer: He received his MSc in Computer Science and Management from the University of Amsterdam in 1997. Currently he is working in the CWI Database Research Group on his Ph.D., which is concerned with multimedia indexing and retrieval using feature grammars. Peter M.G. Apers, Ph.D.: He is a full professor in the area of databases at the University of Twente, the Netherlands. He obtained his MSc and Ph.D. at the Free University, Amsterdam, and has been a visiting researcher at the University of California, Santa Cruz and Stanford University. His research interests are query optimization in parallel and distributed database systems to support new application domains, such as multimedia applications and WWW. He has served on the program committees of major database conferences: VLDB, SIGMOD, ICDE, EDBT. In 1996 he was the chairman of the EDBT PC. In 2001 he will, for the second time, be the chairman of the European PC of the VLDB. Currently he is coordinating Editor-in-Chief of the VLDB Journal, editor of Data & Knowledge Engineering, and editor of Distributed and Parallel Databases. Martin Kersten, Ph.D.: He received his PhD in Computer Science from the Vrije Universiteit in 1985 on research in database security, whereafter he moved to CWI to establish the Database Research Group. Since 1994 he is professor at the University of Amsterdam. Currently he is heading a department involving 60 researchers in areas covering BDMS architectures, datamining, multimedia information systems, and quantum computing. In 1995 he co-founded Data Distilleries, specialized in data mining technology, and became a non-executive board member of the software company Consultdata Nederland. He has published ca. 130 scientific papers and is member of the editorial board of VLDB journal and Parallel and Distributed Systems. He acts as a reviewer for ESPRIT projects and is a trustee of the VLDB Endowment board.  相似文献   

8.
9.
We have developed a high-throughput, compact network switch (the RHiNET-2/SW) for a distributed parallel computing system. Eight pairs of 800-Mbit/s×12-channel optical interconnection modules and a CMOS ASIC switch are integrated on a compact circuit board. To realize high-throughput (64 Gbit/s) and low-latency network, the SW-LSI has a customized high-speed LVDS I/O interface, and a high-speed internal SRAM memory in a 784-pin BGA one-chip package. We have also developed device implementation technologies to overcome the electrical problems (loss and crosstalk) caused by such high integration. The RHiNET-2/SW system enables high-performance parallel processing in a distributed computing environment. Shinji Nishimura: He is a researcher in the Department of Network System at the Central Research Laboratory, Hitachi Ltd., at Tokyo. He obtained his bachelors degree in Electronics Engineering from the University of Tokyo in 1989, and his M.E. from the University of Tokyo in 1991. He joined a member of the Optical Interconnection Hitachi Laboratory from 1992. His research interests are in hardware technology for the optical interconnection technologies in the computer and communication systems. Katsuyoshi Harasawa: He is a Senior Enginner of Hitachi Communication Systems Inc. He obtained his bachelors degree in Electrical Engineering from Tokyo Denki University. He is a chief of development of the devices and systems for the optical telecommunication. He was engaged in Development of Optical Reciever and Transmitter module. He joined RWCP project from 1997. His research interests are in hardward technology for optical interconnection in distributed parallel computing system (RHiNET). Nobuhiro Matsudaira: He is a engineer in the Hitachi Communication Systems, Inc. He obtained his bachelors degree in Mercantile Marine Engineering from the Kobe University of Mercantile Marine in 1986. He was engaged in Development of Optical Reciever and Transmitter module at 2.4 Gbit/s to 10Gbit/s. He joined RWCP project from 1998. His reserch interests are in hardware technology for the optical interconnection technology in the computer and communication systems. Shigeto Akutsu: He is a staff in Hitachi Communication Systems Inc. He obtained his bachelors degree in Electronics from Kanagawa University, Japan in 1998. His research interests are hardware technology for the optical interconnection technology in the computer and communication systems. Tomohiro Kudoh, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1992. He has been chief of the parallel and distributed architecture laboratory, Real World Computing Partnership since 1997. His research interests include the area of parallel processing and network for high performance computing. Hiroaki Nishi: He received B.E., M.E. from Keio University, Japan, in 1994, 1996, respectively. He joined Parallel & Distributed Architecture Laboratory, Real World Computing Partnership in 1999. He is currently working on his Ph.D. His research interests include area of interconnection networks. Hideharu Amano, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1986. He is now an Associate Professor in the Department of Information and Computer Science, Keio University. His research interests include the area of parallel processing and reconfigurable computing.  相似文献   

10.
Variable bit rate (VBR) compression for media streams allocates more bits to complex scenes and fewer bits to simple scenes. This results in a higher and more uniform visual and aural quality. The disadvantage of the VBR technique is that it results in bursty network traffic and uneven resource utilization when streaming media. In this study we propose an online media transmission smoothing technique that requires no a priori knowledge of the actual bit rate. It utilizes multi-level buffer thresholds at the client side that trigger feedback information sent to the server. This technique can be applied to both live captured streams and stored streams without requiring any server side pre-processing. We have implemented this scheme in our continuous media server and verified its operation across real world LAN and WAN connections. The results show smoother transmission schedules than any other previously proposed online technique. This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), and IIS-0082826, DARPA and USAF under agreement nr. F30602-99-1-0524, and unrestricted cash/equipment gifts from NCR, IBM, Intel and SUN. Roger Zimmermann is currently a Research Assistant Professor with the Computer Science Department and a Research Area Director with the Integrated Media Systems Center (IMSC) at the University of Southern California. His research activities focus on streaming media architectures, peer-to-peer systems, immersive environments, and multimodal databases. He has made significant contributions in the areas of interactive and high quality video streaming, collaborative large-scale group communications, and mobile location-based services. Dr. Zimmermann has co-authored a book, a patent and more than seventy conference publications, journal articles and book chapters in the areas of multimedia and databases. He was the co-chair of the ACM NRBC 2004 workshop, the Open Source Software Competition of the ACM Multimedia 2004 conference, the short paper program systems track of ACM Multimedia 2005 and will be the proceedings chair of ACM Multimedia 2006. He is on the editorial board of SIGMOD DiSC, the ACM Computers in Entertainment magazine and the International Journal of Multimedia Tools and Applications. He has served on many conference program committees such as ACM Multimedia, SPIE MMCN and IEEE ICME. Cyrus Shahabi is currently an Associate Professor and the Director of the Information Laboratory (InfoLAB) at the Computer Science Department and also a Research Area Director at the NSF's Integrated Media Systems Center (IMSC) at the University of Southern California. He received his M.S. and Ph.D. degrees in Computer Science from the University of Southern California in May 1993 and August 1996, respectively. His B.S. degree is in Computer Engineering from Sharif University of Technology, Iran. He has two books and more than hundred articles, book chapters, and conference papers in the areas of databases and multimedia. Dr. Shahabi's current research interests include Peer-to-Peer Systems, Streaming Architectures, Geospatial Data Integration and Multidimensional Data Analysis. He is currently an associate editor of the IEEE Transactions on Parallel and Distributed Systems (TPDS) and on the editorial board of ACM Computers in Entertainment magazine. He is also the program committee chair of ICDE NetDB 2005 and ACM GIS 2005. He serves on many conference program committees such as IEEE ICDE 2006, ACM CIKM 2005, SSTD 2005 and ACM SIGMOD 2004. Dr. Shahabi is the recipient of the 2002 National Science Foundation CAREER Award and 2003 Presidential Early Career Awards for Scientists and Engineers (PECASE). In 2001, he also received an award from the Okawa Foundations. Kun Fu is currently a Ph.D candidate in computer science from the University of Southern California. He did research at the Data Communication Technology Research Institute and National Data Communication Engineering Center in China prior to coming to the United States and is currently working on large scale data stream recording architectures at the NSF's Integrated Media System Center (IMSC) and Data Management Research Laboratory (DMRL) at the Computer Science Department at USC. He received an MS in engineering science from the University of Toledo. He is a member of the IEEE. His research interests are in the area of scalable streaming architectures, distributed real-time systems, and multimedia computing and networking. Mehrdad Jahangiri was born in Tehran, Iran. He received the B.S. degree in Civil Engineering from University of Tehran at Tehran, in 1999. He is currently working towards the Ph.D. degree in Computer Science at the University of Southern California. He is currently a research assistant working on multidimensional data analysis at Integrated Media Systems Center (IMSC)—Information Laboratory (InfoLAB) at the Computer Science Department of the University of Southern California.  相似文献   

11.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

12.
A Technique for Adaptive Scheduling of Soft Real-Time Tasks   总被引:1,自引:1,他引:0  
A number of multimedia and process control applications can take advantage from the ability to adapt soft real-time load to available computational capacity. This capability is required, for example, to react to changed operating conditions as well as to ensure graceful degradation of an application under transient overloads. In this paper, we illustrate a novel adaptive scheduling technique based on rate modulation of a set of periodic tasks in a range of admissible rates. By casting constraints on rate ranges in a linear programming formulation, several adaptation policies can be considered, along with additional constraints reflecting various application requirements. The paper investigates the effectiveness of rate modulation strategies both on simulated task sets and on real experiments. Partial support for this research has been provided by MURST, Italy (PRIN project ISIDE on “Dependable reactive computing systems for industrial applications” and special project “RoboCare” funded by L. 449/97), and by ASI, Agenzia Spaziale Italiana (contract I/R/134/00). Giuseppe Beccari received the Laurea degree in Electronic Engineering in 1993, and the Ph.D. in Information Technology in 1999, both from the University of Parma, Italy. In 1995 he was visiting scholar at the Technical University of Delft, Holland, and at the Laboratoire de Robotique de Paris, France. In 1999 he was employed by CSELT (Centro Studi E Laboratori Telecomunicazioni, currently TILAB, the Telecom Italia Group research center). In 2002 he moved to a spin off company involved in the EUROSAM/FSAF (Future Surface-to-Air Family self defense missile system) project. While his current professional duties focus more on software development and team coordination, dr. Beccari still enjoys investigating real-time scheduling issues and technology. Stefano Caselli received a Laurea degree in Electronic Engineering in 1982 and the Ph.D. degree in Computer and Electronic Engineering in 1987, both from the University of Bologna, Italy. In 1989-90 he has been visiting scholar at the University of Florida. From 1990 to 1999 he has held research fellow and associate professor positions at the University of Parma, Italy. He is now professor of Computer Engineering at the University of Parma, where he is also director of the Laboratory of Robotics and Intelligent Machines (RIMLab). His current research interests include development of autonomous and remotely operated robot systems, service robotics, and real-time systems. Francesco Zanichelli received a Laurea degree in Electronic Engineering in 1987 from the University of Bologna, Italy and the Ph.D. degree in Information Technologies in 1994 from the University of Parma, Italy. Since 1996 he has been an Assistant Professor with the Department of Information Engineering of the University of Parma where he is currently teaching Operating Systems, Information Systems and Multimedia Systems courses. His current research interests include distributed multimedia architectures and protocols, real-time systems, security and Quality of Service technologies for wireless networks, as well as service-oriented Grid middleware.  相似文献   

13.
A separation method for DNA computing based on concentration control is presented. The concentration control method was earlier developed and has enabled us to use DNA concentrations as input data and as filters to extract target DNA. We have also applied the method to the shortest path problems, and have shown the potential of concentration control to solve large-scale combinatorial optimization problems. However, it is still quite difficult to separate different DNA with the same length and to quantify individual DNA concentrations. To overcome these difficulties, we use DGGE and CDGE in this paper. We demonstrate that the proposed method enables us to separate different DNA with the same length efficiently, and we actually solve an instance of the shortest path problems. Masahito Yamamoto, Ph.D.: He is associate professor of information engineering at Hokkaido University. He received Ph.D. from the Graduate School of Engineering, Hokkaido University in 1996. His current research interests include DNA computing based the laboratory experiments. He is a member of Operations Research Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan etc. Atsushi Kameda, Ph.D.: He is the research staff of Japan Science and Technology Corporation, and has participated in research of DNA computing in Hokkaido University. He received his Ph.D. from Hokkaido University in 2001. For each degree he majored in molecular biology. His research theme is about the role of polyphosphate in the living body. As one of the researches relevant to it, he constructed the ATP regeneration system using two enzyme which makes polyphosphate the phosphagen. Nobuo Matsuura: He is a master course student of Division of Systems and Information Engineering of Hokkaido University. His research interests relate to DNA computing with concentration control for shortest path problems, as a means of solution of optimization problems with bimolecular. Toshikazu Shiba, Ph.D.: He is associate, professor of biochemical engineering at Hokkaido University. He received his Ph.D. from Osaka University in 1991. He majored in molecular genetics and biochemistry. His research has progressed from bacterial molecular biology (regulation of gene expression of bacterial cells) to tissue engineering (bone regeneration). Recently, he is very interested in molecular computation and trying to apply his biochemical idea to information technology. Yumi Kawazoe: She is a master course student of Division of Molecular Chemistry of Hokkaido University. Although her major is molecular biology, she is very interested in molecular computation and bioinformatics. Azuma Ohuchi, Ph.D.: He is professor of Information Engineering at the University of Hokkaido, Sapporo, Japan. He has been developing a new field of complex systems engineering, i.e., Harmonious Systems Engineering since 1995. He has published numerous papers on systems engineering, operations research, and computer science. In addition, he is currently supervising projects on DNA computing, multi-agents based artificial market systems, medical informatics, and autonomous flying objects. He was awarded “The 30th Anniversary Award for Excellent Papers” by the Information Processing Society of Japan. He is a member of Operations Research Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan, Japan Association for Medical Informatics, IEEE Computer Society, IEEE System, Man and Cybernetics Society etc. He received PhD from Hokkaido University in 1976.  相似文献   

14.
15.
Due to recent rapid deployment of Internet Appliances and PostPC products, the importance of developing lightweight embedded operating system is being emphasized more. In this article, we like to present the details of design and implementation experience of low cost embedded system, Zikimi, for multimedia data processing. We use the skeleton of existing Linux operating system and develop a micro-kernel to perform a number of specific tasks efficiently and effectively. Internet Appliances and PostPC products usually have very limited amount of hardware resources to execute very specific tasks. We carefully analyze the system requirement of multimedia processing device. Weremove the unnecessary features, e.g. virtual memory, multitasking, a number of different file systems, and etc. The salient features of Zikimi micro kernel are (i) linear memory system and (ii) user level control of I/O device. The result of performance experiment shows that LMS (linear memory system) of Zikimi micro kernel achieves significant performance improvement on memory allocationagainst legacy virtual memory management system of Linux. By exploiting the computational capability of graphics processor and its local memory, we achieve 2.5 times increase in video processing speed. Supported by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Funded by Faculty Research Institute Program 2001, Sahmyook University, Korea. Sang-Yeob Lee received his B.S. and M.S degree from Hanyang University, seoul, Korea in 1995. He is currently working towards the Ph.D. degree in Devision of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. Since 1998, he has been on the faculty of Information Management System at Sahmyook university, Seoul, Korea. His research interests include robot vision systems, pattern recognition, Multimedia systems. He is a member of IEEE. Youjip Won received the B.S and M.S degree in Computer Science from the Department of Computer Science, Seoul National University, Seoul, Korea in 1990 and 1992, respectively and the Ph.D. in Computer Science from the University of Minnesota, Minneapolis in 1997. After finishing his Ph.D., He worked as Server Performance Analysts at Server Architecture Lab., Intel Corp. Since 1999, he has been on the board of faculty members in Division of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. His current research interests include Multimedia Systems, Internet Technology, Database and Performance Modeling and Analysis. He is a member of ACM and IEEE. Whoi-Yul Kim received his B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea in 1980. He received his M.S. from Pennsylvania State University, University Park, in 1983 and his Ph.D. from Purdue University, West Lafayette, in 1989, both in Electrical Engineering. From 1989 to 1994, he was with the Erick Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. Since 1994, he has been on the faculty of Electronic Engineering at Hanyang University, Seoul, Korea. He has been involved with research development of various range sensors and their use in robot vision systems. Recently, his work has focused on content-based image retrieval system. He is a member of IEEE.  相似文献   

16.
In the future, video-streaming systems will have to support adaptation over an extremely large range of display requirements (e.g., 90×60 to 1920×1080). This paper presents the architectural trade-offs of bandwidth efficiency, computational cost, and storage cost to support fine-grained multiresolution video over a large set of resolutions. While several techniques have been proposed, they have focused mainly on limited spatial resolution adaptation. In this paper, we examine the ability of current techniques to support wide-range spatial resolution adaptation. Based upon experiments with real video, we propose an architecture that can support wide-range adaptation efficiently. Our results indicate that multiple encodings with limited spatial adaptation from each encoding provide good trade-offs between efficient coding and the ability to adapt the stream to various resolutions. Jie Huang received her BS in computer and communications and MS in computer science from Beijing University of Posts and Telecommunications, Beijing, China, in 1992 and 1995 respectively, where she was an assistant professor from 1995 to 1999. Since 1999, she has been pursuing her PhD at OGI school of Science and Engineering at Oregon Health and Science University (from 1999 to 2004) and Portland State University (since 2004). Her research interests include multimedia networking and software engineering. Wu-chi Feng received his Ph.D. in Computer Science and Engineering from the University of Michigan in 1996. ~His research interests include multimedia systems, video-based sensor networking technologies, and networking. ~He currently serves as an Editor for the Springer-ACM Multimedia Systems Journal. ~He also serves on the national Orion Cyberinfrastructure Advisory committee. Jonathan Walpole received his Ph.D. degree in Computer Science from Lancaster University, UK. He is a Professor in the Computer Science Department at Portland State University. Prior to joining PSU he was a Professor and Director of the Systems Software Laboratory at the OGI School of Science and Engineering at Oregon Health & Science University. His research interests are in operating systems, networking, distributed systems and multimedia computing. He has pioneered research in adaptive resource management and the integration of application and system-level quality of service management. He has also done leading edge research on dynamic specialization for enhanced performance, survivability and evolvability of large software systems. His research on distributed multimedia systems began in 1988, and in the early 1990s he lead the development of one of the first QoS-adaptive Internet streaming video players.  相似文献   

17.
Grammar-based parsing is a prevalent method for natural language understanding(NLU)and has been introduced into dialogue systems for spoken language processing (SLP).A robust parsing scheme is proposed in this paper to overcome the notorious phenomena,such as garbage,ellipsis,word disordering,fragment ,and ill-form,which frequently occur in splien utterances,Keyword categories are used as terminal symbols,and the definition of grammar is extended by introducing three new rule types,by-passing,up-messing and overcrossing,in addition to the general rules called up-tying in this paper,and the use of semantic items simplifies the semantics extraction.The corresponding parser marionette,which is essentially a partial chart parser,is enhanced to parse the semantic grammar.The robust parsing scheme integrating the above methods has been adopted in an air traveling information service system called EasyFlight,and has achieved a high performance when used for parsing spontaneous speeches.  相似文献   

18.
19.
Recently there has been great interest in the design and study of evolvable systems based on Artificial Life principles in order to monitor and control the behavior of physically embedded systems such as mobile robots, plants and intelligent home devices. At the same time new integrated circuits calledsoftware-reconfigurable devices have been introduced which are able to adapt their hardware almost continuously to changes in the input data or processing. When the configuration phase and the execution phase are concurrent, the software-reconfigurable device is calledevolvable hardware (EHW). This paper examines an evolutionary navigation system for a mobile robot using a Boolean function approach implemented on gate-level evolvable hardware (EHW). The task of the mobile robot is to reach a goal represented by a colored ball while avoiding obstacles during its motion. We show that the Boolean function approach using dedicated evolution rules is sufficient to build the desired behavior and its hardware implementation using EHW allows to decrease the learning time for on-line training. We demonstrate the effectiveness of the generalization ability of the Boolean function approach using EHW due to its representation and evolution mechanism. The results show that the evolvable hardware configuration learned off-line in a simple environment creates a robust robot behavior which is able to perform the desired behaviors in more complex environments and which is insensitive to the gap between the real and simulated world. Didier Keymeulen, Ph.D.: He currently works as a senior research engineer at the Computer Science Division of Electrotechnical Laboratory, AIST, MITI, Japan. His research interests are in the design of adaptive physically embedded systems using biologically inspired complex dynamical systems. He studied electrical and computer science engineering at the Universite Libre de Bruxelles in 1987. He obtained his M. Sc. and PH. D. in Computer Science from the Artificial Intelligence Laboratory of the Vrije Universiteit Brussel, directed by Dr. Luc Steels, respectively in 1991 and 1994. He was the Belgium laureate of the Japanese JSPS Postdoctoral Fellowship for Foreign Researchers in 1995. Masaya Iwata, Ph.D.: He currently works as a researcher at the Computer Science Division of Electrotechnical Laboratory, AIST, MITI, Japan. His research interests are in developing adaptive hardware devices using genetic algorithms, and in their applications to pattern recognition and image compression. He received his B. E. in 1988, his M. E. in 1990, and his Ph. D. in 1993 in applied physics from the Osaka University. He was a postdoctoral fellow in optical computing at ONERA-CERT, Toulouse, France in 1993. Kenji Konaka: He is currently working as a software research engineer at the Humanoid Interaction Laboratory of the Intelligent Systems Division of Electrotechnical Laboratory, AIST, MITI, Japan. His current research interest is on real-time vision-based mobile robots working in cooperative mode. He has developped a highly interactive distributed real-time software and hardware platform for controlling a group of robots. Yasuo Kuniyoshi, Ph.D.: He is currently a senior research scientist and head of the Humanoid Interaction Laboratory at the Intelligent Systems Division of Electrotechnical Laboratory, AIST, MITI, Japan. His current research interest is on emergence of stable structures out of complex sensory-motor interactions by a humanoid robot. He received IJCAI93 Outstanding Paper A ward and several other awards in the field of intelligent robotics. He received the B. Eng. in applied physics in 1985, M. Eng. and Ph. D. in information engineering in 1988 and 1991 respectively, all from the University of Tokyo. Tetsuya Higuchi, Ph.D.: He heads the Evolvable Systems Laboratory in Electrotechnical Laboratory, AIST, MITI, Japan. He received B. E., M. E., Ph. D. degrees all in electrical engineering from Keio University in 1978, 1980, and 1984, respectively. His current interests include envolvable hardware systems, parallel processing architecture in artificial intelligence, and adaptive systems. He is also in charge of the adaptive devices group in the MITI national project, Real World Computing Project.  相似文献   

20.
Multi-attribute motion data can be generated in many applications/ devices, such as motion capture devices and animations. It can have dozens of attributes, thousands of rows, and even similar motions can have different durations and different speeds at corresponding parts. There are no row-to-row correspondences between data matrices of two motions. To be classified and recognized, multi-attribute motion data of different lengths are reduced to feature vectors by using the properties of singular value decomposition (SVD) of motion data. The reduced feature vectors of similar motions are close to each other, while reduced feature vectors are different from each other if their motions are different. By applying support vector machines (SVM) to the feature vectors, we efficiently classify and recognize real-world multi-attribute motion data. With our data set of more than 300 motions with different lengths and variations, SVM outperforms classification by related similarity measures, in terms of accuracy and CPU time. The performance of our approach shows its feasibility of real-time applications to real-world data. Chuanjun Li is a Ph.D. candidate in Computer Science at the University of Texas at Dallas. His Ph.D. research works primarily on efficient segmentation and recognition of human motion streams, and development of indexing and clustering techniques for the multi-attribute motion data as well as classification of motion data. Dr. Latifur R. Khan has been an Assistant Professor of Computer Science Department at University of Texas at Dallas since September, 2000. He received his Ph.D. and M.S. degree in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh in November 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, NOKIA, Alcatel, USA and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters, and conference papers focusing in the areas of: database systems, multimedia information management, and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g., IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM Fourteenth Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005, and International Conference on Cooperative Information Systems (CoopIS 2005), and program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Dr. Balakrishnan Prabhakaran is currently with the Department of Computer Science, University of Texas at Dallas. Dr. B. Prabhakaran has been working in the area of multimedia systems: multimedia databases, authoring & presentation, resource management, and scalable web-based multimedia presentation servers. He has published several research papers in prestigious conferences and journals in this area.Dr. Prabhakaran received the NSF CAREER Award FY 2003 for his proposal on Animation Databases. Dr. Prabhakaran has served as an Associate Chair of the ACM Multimedia’2003 (November 2003, California), ACM MM 2000 (November 2000, Los Angeles), and ACM Multimedia’99 conference (Florida, November 1999). He has served as guest-editor (special issue on Multimedia Authoring and Presentation) for ACM Multimedia Systems journal. He is also serving on the editorial board of Multimedia Tools and Applications Journal, Kluwer Academic Publishers. He has also served as program committee member on several multimedia conferences and workshops. Dr. Prabhakaran has presented tutorials in several conferences on topics such as network resource management, adaptive multimedia presentations, and scalable multimedia servers.B. Prabhakaran has served as a visiting research faculty with the Department of Computer Science, University of Maryland, College Park. He also served as a faculty in the Department of Computer Science, National University of Singapore as well as in the Indian Institute of Technology, Madras, India  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号