首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pure vanadium dioxide (VO2) and CeOx–VO2 (1.5 < x < 2) composite thin films were grown on muscovite substrate by inorganic sol–gel process using vanadium pentaoxide and cerium(III) nitrate hexahydrate powder as precursor. The crystalline structure, morphology and phase transition properties of the thin films were systematically investigated by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, FE-SEM and optical transmission measurements. High quality of the VO2 and CeOx–VO2 composite films were obtained, in which the relative fractions of +4 valence state vanadium were above 70 % though the concentrations of cerium reached 9.77 at %. However, much of cerium compounds were formed at the edge of grains and the addition of cerium resulted in more clearly defined grain boundaries as shown in SEM images. Meanwhile, the composite films exhibited excellent phase transition properties and the infrared transmittance decreased from about 70 to 10 % at λ = 4 μm bellow and above the metal–insulator phase transition temperature. The metal–insulator phase transition temperatures were quite similar with about 66 °C of the pure VO2 and CeOx–VO2 composite thin films. But hysteresis widths increased with more addition of cerium, due to the limiting effect of grain boundaries on the propagation of the phase transition. Particularly, the CeOx–VO2 composite film with an addition of 7.82 at % Ce showed a largest hysteresis width with about 20.6 °C. In addition, the thermochromic performance of visible transmittance did not change obviously with more addition of cerium.  相似文献   

2.
D. Paul Joseph 《Thin solid films》2009,517(21):6129-6867
Studies on spray deposited transparent conducting Li doped SnO2 thin films are scarce. Li (0 to 5 wt.%) doped SnO2 thin films spray deposited onto glass substrates at 773 K in air from chloride precursors were studied for their structural, optical and temperature dependent electrical behaviors. X-ray diffraction patterns indicated single phase with polycrystalline nature. Systematic variation in surface morphology on Li doping was examined by scanning electron microscopy and atomic force microscopy. Film thickness, optical band gap (direct and indirect), sheet resistance and figure of merit were computed from spectral transmittance and temperature dependent resistivity data. Lithium doping was found to decrease the value of sheet resistance by an order in magnitude. Activation energy was computed from temperature dependent electrical resistivity data measured in the range 300 to 448 K. The 4 wt.% Li doped SnO2 film was found to have a high value of figure of merit among other films. The results are discussed.  相似文献   

3.
We present the structural and physical characterization of vanadium dioxide (VO2) thin films prepared by reactive electron beam evaporation from a vanadium target under oxygen atmosphere. We correlate the experimental parameters (substrate temperature, oxygen flow) with the films structural properties under a radiofrequency incident power fixed to 50 W. Most of the obtained layers exhibit monocrystalline structures matching that of the monoclinic VO2 phase. The temperature dependence of the electrical resistivity and optical transmission for the obtained films show that they present thermoelectric and thermochromic properties, with a phase transition temperature around 68 °C. The results show that for specific experimental conditions the VO2 layers exhibit sharp changes in electrical and optical properties across the phase transition.  相似文献   

4.
Porous nano-structured vanadium dioxide (VO2) thin films have been prepared on mica substrates via sol–gel process using surfactant cetyltrimethyl ammonium bromide, nonionic surfactant polyethylene glycol, and anionic surfactant sodium dodecyl sulfate as nano-structure directing agents. Models concerning the structure forming were proposed to explain the synthesis mechanisms between V2O5 colloid and different surfactants. Porous nano-structured VO2 films with sphere-shaped, island-shaped and strip-shaped nanocrystals are synthesized in the experiments, and the optical properties and thermochromic properties of these films are compared. The porous nano-structured VO2 films showed excellent infrared transmittance (nearly 70 %), low transition temperature (59.7 °C without doping), wide hysteresis width (37.8 °C), and different optical transmittance difference before and after the phase transition (39–67 %). The results suggest that these porous nano-structured VO2 films have significant importance in practical application in VO2-based optical and electronic devices.  相似文献   

5.
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C.  相似文献   

6.
Single hexagonal-phase MgxZn1?xO films were deposited on glass substrates by pulsed laser deposition from a ZnO target mixed with MgO. The effect of substrate temperature on the structural, electrical and optical properties was investigated by X-ray diffraction and the transmittance measurements. It was observed that Mg incorporation lead to a clear shift of the (002) peak position to lower angle with reference to pure ZnO films due to the residual stress change with deposition temperature. It was also found that Mg doping increased the resistivity by 2 orders of magnitude and the maximum resistivity was 0.072 Ω·cm at 550 °C with the carrier concentration of 1.1 × 1019 cm?3. The visible transmittance of above 80 % was obtain in the alloy films, which optical band gap was observed to increase with the substrate temperature, attaining 3.85 eV at 600 °C. The possible mechanism was discussed.  相似文献   

7.
Depending on the resistivity and transmittance, transparent conductive oxides (TCO) are widely used in thin film optoelectronic devices. Thus doped In2O3 (ITO), ZnO, SnO2 are commercially developed. However, the deposition process of these films need sputtering and/or heating cycle, which has negative effect on the performances of the organic devices due to the sputtering and heat damages. Therefore a thermally evaporable, low resistance, transparent electrode, deposited onto substrates room temperature, has to be developed to overcome these difficulties. For these reasons combination of dielectric materials and metal multilayer has been proposed to achieve high transparent conductive oxides. In this work the different structures probed were: MoO3 (45 nm)/Ag (x nm)/MoO3 (37.5 nm), with x = 5-15 nm. The measure of the electrical conductivity of the structures shows that there is a threshold value of the silver thickness: below 10 nm the films are semiconductor, from 10 nm and above the films are conductor. However, the transmittance of the structures decreases with the silver thickness, therefore the optimum Ag thickness is 10 nm. A structure MoO3 (45 nm)/Ag (10 nm)/MoO3 (37.5 nm) resulted with a resistivity of 8 × 10− 5 Ω cm and a transmittance, at around 600 nm, of 80%. Such multilayer structure can be used as anode in organic solar cells according to the device anode/CuPc/C60/Alq3/Al. We have already shown that when the anode of the cells is an ITO film the introduction of a thin (3 nm) MoO3 layer at the interface anode (ITO)/organic electron donor (CuPc) allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc [1]. This property has been used in the present work to achieve a high hole transfer efficiency between the CuPc and the anode. For comparison MoO3/Ag/MoO3/CuPc/C60/Alq3/Al and ITO/MoO3/CuPc/C60/Alq3/Al solar cells have been deposited in the same run. These devices exhibit efficiency of the same order of magnitude.  相似文献   

8.
High quality VO2 crystal films have been prepared on sapphire substrates by pulsed laser deposition method and the effects of oxygen pressure on the crystal phase structure are investigated. Results indicate that the phases and microstructures of VO2 films are strongly sensitive to oxygen pressure. High oxygen pressure tends to form coarse B-VO2 nanocrystals while low pressure favors a flat M1-VO2 film epitaxial growth. X-ray diffraction φ-scan patterns confirm the [020] epitaxial growth orientation of the M1-VO2 film and the in-plane lattice epitaxial relationship at the interface is also examined. Raman spectra indicate that M1-VO2 phase has much stronger Raman scattering modes than B-VO2, and the clear phonon modes further confirm the idea stoichiometry of VO2 crystal film. Infrared transmittance spectra as the function of temperature are recorded and the results show that M1-VO2 crystal films undergo a distinct infrared transmittance variation across metal insulator transition boundary, while B-VO2 exhibits negligible thermochromic switching properties in the temperature range concerned. The pronounced phase transition behavior of the M1-VO2 crystal film makes it a promising candidate for optical filter/switch and smart window applications in the future.  相似文献   

9.
Preparation and optical properties of phase-change VO2 thin films   总被引:5,自引:0,他引:5  
In this work, VO2 thin films were prepared on three kinds of substrates by the sol-gel dipcoating method followed by heat treatment under vacuum. These thin films were analysed by x-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The infrared and ultraviolet-visible spectra of the VO2 thin films were also recorded during heating and cooling between room temperature and 100°C. The experimental results show that VO2 thin films thus prepared exhibit thermally induced reversible phase transition, and the largest changes in transmittance and reflectivity are approximately 58 and 25%, respectively, in the case of vacuum heat treatment at 400°C and silica glass substrates. The refractive index (n) decreases and the absorption coefficient (k) increases when heating these thin films from room temperature to 100°C, and vice versa for cooling. The reasons why the optical constants and infrared absorption spectra change so remarkably are discussed.  相似文献   

10.
Vanadium dioxide (VO2) thin films have been shown to undergo a rapid electronic phase transition near 70 °C from a semiconductor to a metal, making it an interesting candidate for exploring potential application in high speed electronic devices such as optical switches, tunable capacitors, and field effect transistors. A critical aspect of lithographic fabrication in devices utilizing electric field effects in VO2 is the ability to grow VO2 over thin dielectric films. In this article, we study the properties of VO2 grown on thin films of Yttria-Stabilized Zirconia (YSZ). Near room temperature, YSZ is a good insulator with a high dielectric constant ($\epsilon _{\rm r} > 25$\epsilon _{\rm r} > 25). We demonstrate the sputter growth of polycrystalline VO2 on YSZ thin films, showing a three order resistivity transition near 70 °C with transition and hysteresis widths of approximately 7 °C each. We examine the relationship between chemical composition and transition characteristics of mixed phase vanadium oxide films. We investigate changes in composition induced by low temperature post-deposition annealing in oxidizing and reducing atmospheres, and report their effects on electronic properties.  相似文献   

11.
Thin films of vanadium dioxide (VO2) on glass substrates were produced by the aqueous sol-gel method. Various levels of doping were achieved by adding small quantities of a water-soluble molybdenum compound to the sol. After dip coating, the substrates were reduced by heat treatment in a low-pressure carbon monoxide/carbon dioxide (CO/CO2) atmosphere. The change in electrical conductivity with temperature, and optical reflectance in the semiconductor and metallic phases were measured and compared to undoped VO2 films. Doping the VO2 films with molybdenum lowered the transition temperature of the semiconductor-to-metal phase change; at a doping level of 7 at.% the transition temperature was measured at 24 °C, as indicated by the electrical conductivity. All the films showed a substantial change in reflectance upon heating through the transition. The optical reflectance in the semiconductor state increased slightly with additional dopant, while the reflectance in the metallic state remained constant.  相似文献   

12.
掺钨二氧化钒薄膜的制备与分析   总被引:8,自引:0,他引:8  
通过凋研国内外的各种制备方法,比较它们的优缺点后,选用磁控溅射法.在硅片上得到了电阻变化2个数量级的二氧化钒(VO2)薄膜.对薄膜进行电学性能的测试,结果表明:掺钨后二氧化钒薄膜的相变温度比纯的二氧化钒薄膜相变温度有所降低,掺钨后薄膜的近红外透射率也随之减小.通过X射线衍射和X射线光电子谱对薄膜的微观结构和组分进行了分析.  相似文献   

13.
Single-phase monoclinic vanadium dioxide (VO2) films were grown on a Si(100) substrate using inductively coupled plasma (ICP)-assisted sputtering with an internal coil. The VO2 film exhibited metal-insulator (M-I) transition at around 65 °C with three orders of change in resistivity, with a minimum hysteresis width of 2.2 °C. X-ray diffraction showed structural phase transition (SPT) from monoclinic to tetragonal rutile VO2. For conventional reactive magnetron sputtering, vanadium oxides with excess oxygen (V2O5 and V3O7) could not be eliminated from stoichiometric VO2. Single-phase monoclinic VO2 growths that are densely filled with smaller crystal grains are important for achieving M-I transition with abrupt resistivity change.  相似文献   

14.
Low-pressure organometallic chemical vapour deposition (OMCVD) and dip-coating of VO2 films using vanadyl tri(isobutoxide) as the starting material were investigated. In OMCVD, discontinuous VO2 films, which were composed of fine needle crystals, formed under very limited conditions, around 600° C with a flow rate of oxygen gas of 0.2 to 0.5 cm3 sec–1. However, very uniform and tightly packed VO2 films were grown by deposition at 300 to 700° C in the absence of oxygen gas and subsequent annealing in nitrogen at 500° C for 2 h. The films exhibited a sharp semiconductor to metal transition at 60 to 70° C, accompanied by a change in the resistivity by four to five orders of magnitude. In dip-coating with two-step heat-treatments (300° C for 1 h in nitrogen and subsequently 500° C for 2 h in nitrogen), of the gel films formed from VO(O-i-Bu)3-H2O-i-PrOH system, uniform (0 1 1) oriented VO2 films were formed. A transition in the electrical conductivity by two to two and a half orders of the magnitude was found to occur around 60° C. Before and after the transition, no distinct variation in the XRD pattern was observed.  相似文献   

15.
《Thin solid films》1986,138(2):255-265
Thin films of SnO2 doped with fluorine were produced by the conventional spraying method using Corning 7059 glass substrates. The electrical and optical properties of these films were determined as a function of the substrate temperature Ts and dopant concentration in the basic spraying solution. The visible and near-IR transmittance as well as the electrical resistivity of the films decreased with an increase in the fluorine concentration. The best electro-optical properties (an average transmittance of 75% and an electrical resistivity of 10−3 Ω cm) were achieved for 250°C⩽Ts⩽350°C and fluorine concentrations (relative to tin) in the spraying solution of around 2 at.%. The surface texture of the films was investigated by scanning electron microscopy and optical microscopy. The fluorine content of the samples was analysed by secondary ion mass spectroscopy, Auger electron spectroscopy and electron spectroscopy for chemical analysis. Structural changes were studied using X-ray diffractometry. A systematic change in the intensity of the X-ray diffraction lines as a function of the fluorine content was observed. Theoretical calculations of the structure factors associated with the SnO2 lattice if fluorine atoms are introduced into substitutional and interstitial positions were performed.  相似文献   

16.
The vanadium oxide (VO2) films have been prepared on SiO2/Si substrates by using a modified Ion Beam Enhanced Deposition (IBED) method. During the film deposition, high doses of Ar+ and H+ ions have been implanted into the deposited films from the implanted beam. The resistance change of the VO2 films with temperature has been measured and the phase transition process has been observed by using the X-ray Diffraction technique. The phase transition of the IBED VO2 films starts at a low temperature of 48 °C and ends at a high temperature of 78 °C. It is found that the phase transition characteristics can be adjusted by changing the annealing temperature or the time and the phase transition characteristics of the IBED VO2 films depend on the quantity and location of argon atoms in the film matrix.  相似文献   

17.
In this study, MoO3 thin films were prepared using the CO2 laser-assisted evaporation technique. The effect on the structural and optical properties of the oxygen content in the sample was evaluated. The samples were grown at a substrate temperature of 230 °C, pressure base of 5.3×10?3 Pa, and at various oxygen pressures. The material was characterized through X-ray diffraction and optical transmittance in the visible spectral range (250–900 nm). The analysis showed that both structural and optical properties are critically dependent on the oxygen content. The samples prepared without oxygen crystallized in the β-Mo8O23 phase, indicating the presence of non-stoichiometric MoO3. With increasing oxygen content during the growth of the film, it becomes stoichiometric in the alpha phase of MoO3. An energy gap of 3.7 eV was observed in samples prepared without oxygen; the value increased up to 3.98 eV for the final 7.5×10?2 Pa oxygen pressure. An absorption center appeared around 780 nm in the transmittance spectra of samples prepared in vacuum, and the intensity of this center diminished as the oxygen content increased in the chamber. This indicates that the absorption center is associated with the oxygen vacancies.  相似文献   

18.
《Thin solid films》1986,135(2):183-187
The stability of the electrical, optical and mechanical properties of sputtered aluminium-doped ZnO (AZO) films with a resistivity from 10-3 to 10-4 Ω cm was investigated. No significant change in these properties of AZO films was observed for use in air at room temperature for 1 year. It is shown that stable properties for use in vacuum and inert and nitrogen gases at temperatures as high as 400°C can be attained for AZO films sputtered with an Al2O3 content above 1.0 wt.%. After heat treatment in air at 400°C, the resistivity of AZO films increases by about five orders of magnitude. The resistivity can be returned to that of the as-deposited state by heat treatment in hydrogen gas at a temperature near 400°C.  相似文献   

19.
Vanadium dioxide (VO2) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τc ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long‐standing issues that hindered its application in energy efficient windows: high τc, low luminous transmittance (Tlum), and undesirable solar modulation ability (ΔTsol). Many approaches, including nano‐thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach—nano‐thermochromism—which is to integrate VO2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high‐quality VO2 nanoparticles, and has its own advantages of large‐scale synthesis and precise phase control of VO2. This Review focuses on hydrothermal synthesis, physical properties of VO2 polymorphs, and their transformation to thermochromic VO2(M), and discusses the advantages, challenges, and prospects of VO2(M) in energy‐efficient smart windows application.  相似文献   

20.
Thermochromic VO2-based films have higher infrared transmittance below a “critical” temperature τc than above this temperature and can be used for regulating the solar energy transmittance Tsol in energy efficient windows. Pure VO2 is not practical, though, since (i) the modulation of Tsol is too small at τc, (ii) the luminous transmittance is too low, and (iii) τc is too high. This paper discusses how these three challenges can be met. Specifically, using VO2-based nanoparticle composites rather than films makes it possible to significantly alleviate (i) and (ii), Mg doping of VO2 can give further improvements of (ii), and W doping (and to some extent also Mg doping) is important for (iii) and can bring τc to a comfort temperature. The paper hence delineates a path towards practically useful thermochromic fenestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号