首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
高炉铁水硅含量的神经网络时间序列预报   总被引:5,自引:3,他引:5  
利用BP网络实现了高炉铁水硅含量的时间序列预报,并以高炉铁水硅含量的历史数据对下一炉铁水的硅含量进行离线预报。结果表明,本模型具有较好的预报效果。  相似文献   

2.
基于神经网络的高炉铁水硅含量预报模型的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据RBF神经网络具有收敛速度快和全局优化的特点,建立了RBF网络模型,并将其应用对高炉铁水硅含量预报。监于铁水硅含量与炉缸温度之间的密切相关性,通过铁水硅含量来间接地反映炉内温度变化。采用MATLAB中的Newrbe函数进行函数逼近,对高炉一段连续时期内正常生产的数据的归一化处理后进行训练和仿真,提高了铁水硅含量预报的命中率。高炉冶炼运用先进的RBF人工神经网络预报模型,能预报铁水硅含量的高低,判断炉温走势,实现炉温调控,有利于节能降耗,并可监测多个主要控制对象,为高炉操作提供指导。  相似文献   

3.
采用基于自学习的参考炉次法,建立了反应高炉炉温和铁水质量的预报模型,对炼铁过程铁水硅含量和硫含量进行预报,建立了基于BP神经网络的高炉铁水硅含量和硫含量预报模型。用国内某高炉的生产数据进行模型训练,经预报结果数据验证,想要通过现有直接获取的高炉参数很难准确同时预报铁水硅含量和硫含量,但基本能准确预报铁水硫含量的变化趋势。  相似文献   

4.
神经网络模型与时差方法结合预报铁水硅含量   总被引:3,自引:0,他引:3  
王玉涛  周建常  王师 《钢铁》1999,34(11):7-11
针对以BP算法为代表的监督学习神经网络在直接多步预测中不能渐进计算的问题,建立了一个三层简单反馈递归的神经网络模型,提出了将神经网络模型与时差方法相结合在高炉铁水硅含量预报中应用的策略。结合现场采集的实时数据进行实验,并与采用ARMAX模型的预测结果相比较,具有较高的命中率。  相似文献   

5.
通过对影响高炉铁水硅含量的各变量分析和分类,在初步判断炉热发展趋势的基础上预报高炉铁水硅含量.用本模型在线预报梅山三号高炉铁水硅含量,预报结果表明当允许误差为±0.1%时的命中率达到81.67%,在没有炉顶煤气连续分析装置的条件下取得了较好的效果.  相似文献   

6.
按照现代控制理论,利用人工神经网络方法,把高炉视为多输入—单输出系统,结合高炉生产实际建立了石钢高炉铁水含硅量神经网络预报模型。通过引入动态步长和惯性项系数提高了网络收敛速度。采用不断更新学习样本集的方法提高了铁水含硅量预报的命中率。结果表明:在允许误差为0.1%时,命中率达到了86.67%,可以为高炉操作提供指导。  相似文献   

7.
石钢高炉铁水含硅量神经网络预报模型   总被引:1,自引:0,他引:1  
本文按照现代控制理论,把高炉视为多输入——单输出系统,利用人工神经网络方法,结合高炉生产实际建立了石钢高炉铁水含硅量BP神经网络模型。通过引入动态步长和“惯性项系数”提高了网络收敛速度。采用“修正式”预报模式提高了铁水含硅量预报的命中率。结果表明:在允许误差为0.1%时,命中率达到了86.67%,可以为高炉操作提供指导。  相似文献   

8.
为实现高炉炼铁过程中铁水硅含量的准确预测,针对高炉炼铁过程的非线性、时变、高维、大时滞等特点,构建了基于时间序列的铁水硅含量预测样本集,分析了铁水硅含量在时间序列上的自相关性.采用时间序列加权移动平均法预处理样本数据,引入神经网络时间序列模型,深度挖掘历史多时刻铁水硅含量与当前时刻铁水硅含量之间的数量关系,经过多次权值...  相似文献   

9.
神经网络在梅山高炉铁水硅含量预报中的应用   总被引:10,自引:0,他引:10  
李家新  周莉英  唐成润 《钢铁》2001,36(5):14-16
对高炉铁水硅含量预报的统计模型、神经网络模型和神经网络方法加统计方法的综合模型三种预报模型作了对比 ,结果表明 :用神经网络方法和统计模型综合预报的效果较好 ,离线模型预报结果± 0 .1命中率达到 86 .6 7 ,为高炉铁水硅含量预报引入神经网络方法的实现提供了实例  相似文献   

10.
李昕  毕学工 《河南冶金》2010,18(2):21-23
通过神经网络对韶钢8号高炉的部分生产数据进行了铁水[Si]含量的预报,确定了w(Si)的主要影响因素,构建了较好的神经网络结构,并根据预报结果提出了判定炉热变化趋势的符合率的标准。  相似文献   

11.
Fuzzy Prediction of Silicon Content for BF Hot Metal   总被引:1,自引:0,他引:1  
Therearemanyfactorsinfluencingthequality ofhotmetalinBFprocess.Themostimportant threefactorsarehotmetaltemperature,hotmetal siliconcontentandslagbasicity[1].Siliconcontentis animportantfactorreflectingthestateofthelower partofblastfurnaceforblastfurnaceop…  相似文献   

12.
贝叶斯网络在高炉铁水硅含量预测中的应用   总被引:9,自引:1,他引:9  
刘学艺  刘祥官  王文慧 《钢铁》2005,40(3):17-20
应用贝叶斯网络对高炉铁水硅含量进行预测。首先阐述了贝叶斯网络的数学描述,在此基础上给出贝叶斯网络预测公式的一种简化形式。然后建立高炉铁水硅含量的贝叶斯网络预测模型,对山东莱钢1 号高炉在线采集的2 000炉数据进行网络学习,离线预测取得了较好的效果。与神经网络等其他方法相比,它更适合解析高炉过程,而且透明的推理过程对高炉工长判断炉温变化趋势具有指导意义。  相似文献   

13.
鞍钢铁水终点硫含量神经网络预报模型   总被引:1,自引:0,他引:1  
针对鞍钢铁水罐喷吹CaO+Mg粉剂复合脱硫过程,建立了基于BP神经网络的铁水预处理终点硫含量预报模型。用鞍钢的1000炉数据进行模型训练,经60炉数据验证表明,有5%的炉次预报值与实际值完全一致,有76.67%的炉次误差≤0.003%。平均误差为0.0025%。  相似文献   

14.
基于改进BP神经网络的铁水预处理终点硫含量预报模型   总被引:1,自引:1,他引:1  
张慧书  战东平  姜周华 《钢铁》2007,42(3):30-32
铁水预处理脱硫是纯净钢生产中的一项重要任务,其中铁水终点硫含量是反映脱硫站能力和生产效果的重要指标.对梅山钢铁股份有限公司铁水包喷吹CaO Mg粉剂复合脱硫过程,通过采用自适应调整学习率和最大误差学习法对标准BP算法进行了改进,建立了基于改进BP神经网络的铁水预处理终点硫含量预报模型.用梅钢的1154炉数据进行模型训练,经100炉数据现场验证表明,改进的BP算法比标准BP算法预报误差≤0.003%的精度提高28%,有19%的炉次预报值与实际值完全一致,有90%的炉次误差≤0.003%,平均误差为0.0017%.改进的BP算法在铁水预脱硫终点硫含量预报模型应用中获得了更好的使用效果.  相似文献   

15.
研究了高炉铁水硅含量自组织经验进化预测模型中的模式量化问题。在模式量化方案中,采用高炉过程变量时间序列数据的均值、梯度值和波动值作为数据的特征最来进行特征提取,将可预测率、命中率、趋势命中率等判据用于评判预测效果,并用天津铁厂1号高炉的过程数据进行了离线检验。结果表明:基于过程变量的特征提取方法可用于具有均匀时间间隔的高炉过程数据的特征提取。正确运用该方法可使铁水硅含量自组织预测模型的预测命中率提高10%左右。  相似文献   

16.
高绪东 《中国冶金》2014,24(6):24-26
随着现代科技的发展和计算机技术的不断提高,高炉自动化操作显得越来越重要。高炉铁水硅预报能很好地反映高炉内热状态和高炉的成分,对高炉运行状态的判断起到至关重要的作用。在总结前人预报模型的基础上,综合考虑了各种影响因素,建立了BP神经网络模型,并结合现场数据进行计算,模拟结果和实际相符。  相似文献   

17.
 高炉铁水的硅含量是描述铁水质量的一个重要指标。为了在出铁之前了解铁水中硅含量的高低,建立预测模型是必要的。结合遗传算法(GA)和BP神经网络,建立了优化的GA BP预测分析模型,从某高炉选取生产数据进行学习和预测。运行结果表明,模型具有较高的预测精度,当要求绝对误差为±005时,命中率可达70%;绝对误差为±008时,命中率可达923%。同时,应用该模型分析回归了高炉风量、热风压力、富氧量与铁间料批数等参数与铁水硅含量之间的相关关系,其结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导。  相似文献   

18.
张震 《甘肃冶金》2005,27(1):39-41
铁水中的硅在转炉内氧化并产生大量的热量,其中仅有 19. 84%的热量用于加热金属。根据脱磷计算出所需的渣量,结合石灰条件,计算出铁水适宜的含硅量。  相似文献   

19.
 在传统BP神经网络预测模型的基础上,依据灰色理论中的灰色关联度,提出了输出变量各个影响因素的灰色关联度权值,首次建立基于灰色理论的神经网络预测模型,并依据国内某钢厂300组实际生产数据进行仿真试验。试验结果表明:误差绝对值小于5%的炉数有39炉,占总炉数的65.00%;误差绝对值小于10%的炉数共有58炉,占到96.67%。与传统BP神经网络相比,基于灰色理论的神经网络模型的预测精度提高近12.5%,说明基于灰色理论的铁水预处理终点磷含量神经网络预测模型能更精确地反映现场实际水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号