首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skeletal muscles in an animal model of genetic hypertension (the spontaneously hypertensive rat. SHR) exhibit significant deficits in contractile performance. These deficits appear to be unrelated to the rise in blood pressure. Slow-twitch soleus muscles show a decrease in specific muscle tension and a reduced resistance to muscle fatigue during prolonged contractile activity. We tested the hypothesis that the reduced fatigue resistance occurs as a consequence of an impaired ability to maintain or restore Na+ and K+ balance across the sarcolemma during repeated contractions. This may result from a genetically based increase in the Na+ permeability of SHR muscles, coupled with a reduction Na+, K+ pump capacity as the animals mature. Soleus muscles in adult SHR exhibit a significant increase in intracellular Na+ content and a significant decrease in intracellular K+ content at rest. B6RB+ uptake in Na(+)-loaded hypertensive muscles is 45% less than predicted from the number of ouabain-binding sites available. Activation of Na+, K+ pumps using adrenaline or insulin produces a significantly smaller hyperpolarization in hypertensive soleus than in control muscles. Control soleus muscles are hyperpolarized for at least 10 min after a 4 min period of high-frequency activity, but hypertensive soleus muscles remain at resting polarity. Nonetheless, the number of ouabain-binding sites in hypertensive muscle is significantly greater than in control soleus, and binding affinities are similar. This apparent deficit in pump capacity might lead to a greater and more prolonged increase in extracellular K+ during repetitive contractions,and an associated decline in tension. Recently, we have been able to prevent the abnormal decrease in hypertensive soleus fatigue resistance by long-term treatment (8 weeks) with the Ca2+ blocker amlodipine. The therapy prevented or reversed the contractile deficits, but did not restore the responsiveness of the Na+, K+ pump to hormonal stimulation. The current data suggest that both a reduction in Na+, K(+)-pump capacity and changes in Ca2+ distribution play a role in the development of contractile deficits in hypertensive muscles.  相似文献   

2.
The tail artery of the spontaneously hypertensive rat (SHR) (Carworth Farms), excised rapidly and immersed immediately in cold (2 degrees C) Li-substituted physiologic salt solution (LiPSS), continues to exchange cell Na+ and K+ for Li+, this exchange is negligible to the control (Carworth Farms normotensive) CFN). In the incubated artery at 37 degrees C, when the vascular smooth muscle cell is slack, the leakiness of the cell membrane in the SHR is more than offset by increased Na+ pumping activity, so that cell Na+ is subnormal. A high precision technique with ion-specific electrodes was developed to follow the passive downhill and active uphill phases of Na+-K+ exchange in the perfused artery exposed to K+-free physiologic salt solution (K+-free PSS) followed by physiological salt solution (PSS). The exchange was found to be fully reversible and sufficiently equimolar to be definable in terms of movements of K+ alone. The rates of ionic movement across the vascular smooth muscle cell were found to be about 6 times faster for the vessel perfused at low pressure (less than 3 mm Hg) than for the slack incubated artery. The rate of passive downhill movement was significantly accelerated in the mature SHR compared with CFN, and the net active transport activity much enhanced. Similar changes were seen as early as 3 weeks after treatment with DOCA and were pronounced at 8 weeks. It is proposed that conditions favoring a sustained accumulation of Na+ in the vascular smooth muscle cell are countered by an enhanced synthesis of transport protein, of contractile protein, and of paracellular matrix protein which progressively restructure the wall.  相似文献   

3.
Dopamine decreases tubular sodium reabsorption in part by inhibition of Na+,K(+)-ATPase activity in renal proximal tubules. The signaling mechanism involved in dopamine-mediated inhibition of Na+,K(+)-ATPase is known to be defective in spontaneously hypertensive animals. The present study was designed to evaluate the role of phospholipase A2 (PLA2) and its metabolic pathway in dopamine-induced inhibition of Na+,K(+)-ATPase in renal proximal tubules from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Renal proximal tubular suspensions were prepared and Na+,K(+)-ATPase activity was measured as ouabain-sensitive adenosine triphosphate hydrolysis. Dopamine inhibited Na+,K(+)-ATPase activity in a concentration (1 nM-10 microM)-dependent manner in WKY rats while it failed to inhibit the enzyme activity in SHR. Dopamine (10 microM)-induced inhibition of Na+,K(+)-ATPase activity in WKY rats was significantly blocked by mepacrine (10 microM), a PLA2 inhibitor, suggesting the involvement of PLA2 in dopamine-mediated inhibition of Na+,K(+)-ATPase. Arachidonic acid (a product released by PLA2 action) inhibited Na+,K(+)-ATPase in a concentration-dependent (1-100 microM) manner in WKY rats while the inhibition in SHR was significantly attenuated (IC50: 7.5 and 80 microM in WKY rats and SHR, respectively). Furthermore, lower concentrations of arachidonic acid stimulated (30% at 1 microM) Na+,K(+)-ATPase activity in SHR. This suggests a defect in the metabolism of arachidonic acid in SHR. Proadifen (10 microM), an inhibitor of cytochrome P-450 monoxygenase (an arachidonic acid metabolizing enzyme) significantly blocked the inhibition produced by arachidonic acid in WKY rats and abolished the difference in arachidonic acid inhibition of Na+,K(+)-ATPase between WKY rats and SHR. These data suggest that PLA2 is involved in dopamine-induced inhibition of Na+,K(+)-ATPase and altered arachidonic acid metabolism may contribute to reduced dopaminergic inhibition of Na+,K(+)-ATPase activity in spontaneously hypertensive rats.  相似文献   

4.
The retinal pigment epithelium is a transporting epithelium that helps regulate the volume and composition of the subretinal space surrounding photoreceptor outer segments. The capacity of the RPE to actively transport Na+ and K+ between the retina and the blood supply depends on the localization of the Na+, K(+)-ATPase to the apical membrane, but in culture this polar distribution can be lost. Using primary cultures of Xenopus RPE, we examined the anatomical and functional polarity of this electrogenic pump. Confluent monolayers were established on Matrigel-coated microporous filters and cultured for 2-4 weeks in serum-free defined medium. Electrogenic pump activity at the apical and basolateral membranes was assayed by mounting the monolayer and filter in an Ussing chamber and exposing one or the other surface to ouabain while recording the apical (Vap) and basolateral (Vba) membrane potentials with an intracellular microelectrode. The addition of 0.2 mM ouabain to the apical bath caused Vap to rapidly depolarize by about 4 mV, consistent with the inhibition of a hyperpolarizing pump current at that membrane. When ouabain was added to the basal bath, however, it had no effect on Vba, suggesting the absence of a functional Na(+)-K+ pump on the basolateral membrane. To confirm these electrophysiological results, we examined the distribution of the Na+, K(+)-ATPase catalytic component using an antiserum specific for the bovine kidney alpha subunit. Antibody labeling of cultures was highly polarized, with strong reaction present on the apical microvilli, but not the basolateral cell surfaces. The findings of this study indicate that the Na(+)-K+ pump in monolayers of Xenopus RPE, as in native RPE, is located mainly in the apical membrane, providing evidence of a functionally intact transport pathway in these primary cultures.  相似文献   

5.
Toads of the genus Bufo are highly resistant to the toxic effects of digitalis glycosides, and the Na+,K(+)-ATPase of all toad tissues studied to date has been relatively insensitive to inhibition by digitalis and related compounds. In studies of brain microsomal preparations from two toad species, Bufo marinus and Bufo viridis, inhibition of ATPase activity and displacement of [3H]ouabain from Na+,K(+)-ATPase occurred over broad ranges of ouabain or bufalin concentrations, consistent with the possibility that more than one Na+,K(+)-ATPase isoform may be present in toad brain. The data could be fitted to one- or two-site models, both of which were consistent with the presence of Na+,K(+)-ATPase activity with high sensitivity to ouabain and bufalin. Ki (concentration capable of producing 50% inhibition of activity) values for ouabain in the one-site model were in the 0.2 to 3.7 microM range, whereas Ki1 values in the two-site model ranged from 0.085 to 0.85 microM, indicating that brain ATPase was at least three orders of magnitude more sensitive to ouabain than B. marinus bladder ATPase (Ki = 5940 microM). Ouabain was also an effective inhibitor of 86Rb+ uptake in B. marinus brain tissue slices (Ki = 3.1 microM in the one-site model; Ki1 = 0.03 microM in the two-site model). However, the relative contribution of the high ouabain-sensitivity site to the total activity was 17% in the transport assay as compared with 63% in the Na+,K(+)-ATPase enzymatic assay. We conclude that a highly ouabain-sensitive Na+,K(+)-ATPase activity is present and functional in toad brain but that its function may be partially inhibited in vivo.  相似文献   

6.
This article reviews related studies from the authors' laboratory, which focus on the regulation of vascular Na+,K+-ATPase in hypertension. Earlier studies, including the authors', suggested that Na-pump activity in cardiovascular tissues is subject to regulation during hypertension; most of these studies report a stimulation of the vascular enzyme during established stages of hypertension. To test hypothesis that in vascular smooth muscle, strain resulting from elevated pressure may be a signal initiating a cascade of events leading to increased expression of Na+,K+-ATPase, the authors used cell culture and the Flexercell Strain Unit to apply cyclical stretch to rat aortic smooth muscle cells (ASMC) for several days. These studies demonstrated that mechanical strain induces the upregulation of both the alpha-1 and alpha-2 subunits of Na+,K+-ATPase. Mechanisms underlying these changes appear to involve a transient increase in intracellular sodium entering the cell through stretch-activated channels. Calcium entering the cell via L-type channels did not affect stretch-induced upregulation of the alpha isoforms. In addition, protein kinase C inhibition resulted in inhibition of the Na-pump during stretch, but not under nonstretch conditions. The authors conclude that the stretch component of vascular pressure upregulates the Na+,K+-ATPase catalytic subunits. Intracellular sodium may be a signal for this regulation. In addition, phosphorylation by PKC may be important in stretch-induced short-term regulation of the vascular Na-pump.  相似文献   

7.
BACKGROUND: Lactate production after hemorrhagic shock may be produced by aerobic glycolysis, which has been linked to activity of the Na+/K+ pump in smooth muscle and other tissues. We tested whether increased muscle Na+/K+ pump activity after shock was linked to increased lactate production. METHODS: Male Sprague-Dawley rats were subjected to 1 or 2 hours of hemorrhagic shock and then resuscitated with shed blood and normal saline. After 24 hours, pairs of extensor digitorum longus muscles were preincubated for 30 minutes in Krebs buffer (95:5, O2:CO2) with 10 mmol/L glucose. One muscle served as a control and was incubated in buffer alone; the other was incubated in buffer with 1 mmol/L ouabain, an inhibitor of the Na+, K+-ATPase. Lactate, ADP, ATP, glycogen, and creatinine-phosphate were determined. RESULTS: Under these well-oxygenated conditions, muscles from shocked rats produced about twice as much lactate as sham muscles. Inhibition of the Na+/K+ pump by ouabain significantly reduced lactate production. CONCLUSIONS: Hypoxia is unlikely to account for increased muscle lactate production after resuscitated hemorrhagic shock, because high lactate production persists under well-oxygenated incubation conditions. Inhibition of shock-induced lactate production by ouabain indicates energetic coupling of glycolysis to the Na+, K+-ATPase.  相似文献   

8.
We investigated the effect of dopamine on Na+,K(+)-ATPase activity in cultured aortic smooth muscle cells. Na+,K(+)- ATPase activity was measured by a coupled enzyme assay. Our results demonstrate that dopamine and dopamine receptor agonists, SKF-38393 (a D1 receptor agonist) and quinpirole (a D2 receptor agonist) produced 62%, 50% and 49% inhibition of Na+,K(+)-ATPase activity in aortic smooth muscle cells, respectively. The combination of the two agonists produced inhibition similar to that of dopamine. Dopamine- and the agonist-induced Na+,K(+)-ATPase inhibition was blocked by selective receptor antagonists. The Na+,K(+)-ATPase inhibition by SKF-38393 but not by quinpirole was abolished by pertussis toxin. Na+,K(+)-ATPase inhibition was also achieved by guanosine triphosphate analog GTP-gamma-S. SKF-38393 but not quinpirole stimulated phosphoinositide hydrolysis rate in rat aortic slices. SKF-38393-induced phosphoinositide hydrolysis stimulation was reversed by SCH-23390, a dopamine D1 receptor antagonist, and attenuated by pertussis toxin. In conclusion, our observations indicate that dopamine and dopamine receptor agonists inhibit Na+,K(+)-ATPase activity through specific vascular receptors. Dopamine D1 receptors are linked to pertussis toxin sensitive-mechanism(s) and a GTP-binding protein appears to be coupled to the enzyme inhibition. Finally, the inhibition of Na+,K(+)-ATPase activity in response to dopamine D1 receptor activation may be mediated by the phospholipase C signaling pathway.  相似文献   

9.
From epithelial layer of rat intestinal were selected water soluble substances which influenced on Na+,K(+)-ATPase activity in 2 different ways: substances with molecular weight 220 Da, 400 Da were its activators, substance with weight 150 Da-inhibitor. Na+,K(+)-ATPase activators preincubated previously with Na+ acquire properties of inhibitors. Bivalent cations Ca, Mg remove this effect of Na-ions.  相似文献   

10.
H+, K(+)-ATPase is a proton pump responsible for gastric acid secretion. It actively transport proton and K+ coupled with the hydrolysis of ATP, resulting in the formulation of a 10(6) fold proton gradient across the plasma membrane of parietal cells. The pump belongs to a family of P-type ATPases which include the Na+ pump (Na+, K(+)-ATPase) and the Ca2+ pump (Ca(2+)-ATPase). This review focuses on the structure-function relationship of this proton pump by using functional antibodies, specific inhibitor(s), a fluorescent reagent and site-directed mutants. First we prepared monoclonal antibodies which modified the functions of the H+, K(+)-ATPase . One of the antibodies, HK2032 inhibited the H+, K(+)-ATPase activity and the chloride conductance in gastric vesicles opened by S-S cross-linking, suggesting that the chloride pathway is in the H+, K(+)-ATPase molecule, and that the H+, K(+)-ATPase is a multi-functional molecule. Other antibody, HK4001 inhibited the H+, K(+)-ATPase activity by inhibiting its phosphorylation step. By using this antibody we found an H+, K(+)-ATPase isoform in the rabbit distal colon. Second we found that scopadulcic acid B, a main ingredient of Paraguayan traditional herb, is an inhibitor specific for the H+, K(+)-ATPase. This compound inhibited the H+, K(+)-ATPase activity by stabilizing the K(+)-form of the enzyme. Third we studied the conformational changes of the H+, K(+)-ATPase by observing the fluorescence of FITC-labeled enzyme. H+, K(+)-ATPase did not utilize acetylphosphate instead the ATP as an energy source of active transport, suggesting that the energy transduction system is not common among P-type ATPases. Finally we constructed a functional expression system of the H+, K(+)-ATPase in human kidney cells. By using this functional expression system in combination with site-directed mutagenesis, we studied the significance of amino acid residues in the catalytic centers (a phosphorylation site and an ATP binding site) and the putative cation binding sites. We newly found the sites determining the affinity for cations.  相似文献   

11.
1. Na+,K(+)-ATPase is the membrane enzyme catalysing the active transport of Na+ and K+ across the plasma membrane of animal cells. A reduced activity of Na+,K(+)-ATPase has been described in gestational hypertension in a variety of cell types, in agreement with the hypothesis that gestational hypertension can induce membrane transport modifications similar to those reported for essential hypertension. The causes of the reduced Na+,K(+)-ATPase activity are still debated. 2. The aim of the present work was to investigate the molecular mechanism of the reduced enzymic activity in gestational hypertension using as a model Na+,K(+)-ATPase purified from human placenta. Na+,K(+)-ATPase obtained from term placentas of eight healthy pregnant women and eight age-matched women with gestational hypertension was purified as previously described. 3. We observed in gestational hypertension: (i) a significant increase in the activation energies above transition temperature; (ii) a significant decrease in the fluorescence polarization of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (i.e. increased fluidity) and an increase in the mean lifetime (modified hydrophobicity); (iii) a lower Kq, suggesting an enzymic structural modification; and (iv) an increased mean lifetime and rotational relaxation time of pyrene isothiocyanate, indicating a modified ATP binding site.  相似文献   

12.
The Na+,K(+)-ATPase plays a key role in the regulation of ion fluxes and membrane repolarization in the CNS. We have studied glucocorticoid effects on biosynthesis of the Na+,K(+)-ATPase and on ouabain binding in the ventral horn of the spinal cord using intact rats, adrenalectomized (ADX) rats, and ADX rats receiving dexamethasone (ADX+DEX) during 4 days. Cryostat sections from spinal cords were incubated with a 35S-oligonucleotide coding for the alpha 3-subunit or a 3H-cDNA coding for the beta 1-subunit of the Na+,K(+)-ATPase using in situ hybridization techniques. In ventral horn motoneurons, grain density per cell and grain density per area of soma for both probes were slightly reduced in ADX rats but significantly increased in the ADX+DEX group, using ANOVA and the Bonferroni's test. Statistical analysis of frequency histograms of neuronal densities further indicated a significant shift to the right for intact rats compared with ADX rats for both probes. Concomitantly, [3H]ouabain binding to membrane preparations from ventral horns was reduced in ADX rats and restored to normal by DEX administration. No effect of adrenalectomy or DEX treatment was obtained in the dorsal horn. In conclusion, glucocorticoids positively modulate the mRNA for the alpha 3-subunit and the beta 1-subunit of the Na+,K(+)-ATPase and recover ouabain binding to normal values. The increments of the synthesis and activity of an enzyme affecting membrane repolarization and synaptic neurotransmission are consistent with the alleged stimulatory effect of glucocorticoids on spinal cord function.  相似文献   

13.
Digitalis glycoside-like properties of the Bufo marinus toad crude venom and one of its constituents, bufalin, were studied in various assay systems. In concentrations 0.3-30 micrograms/ml crude venom increased the contractility of isolated electrically driven rat atria, constricted rat aortic rings, inhibited ouabain-sensitive Na+,K(+)-ATPase in rat erythrocytes and the Na+,K(+)-pump in rat aorta, and cross-reacted with antidigoxin antibody from the dissociation enhanced lanthanide fluoroimmunoassay (DELFIA). These effects were unaffected by adrenoceptor blockers and the 5-HT antagonist, deseril, but were blocked by antidigoxin antibody. Bufalin (10-30 microM) increased myocardial contractility and inhibited Na+,K(+)-ATPase in rat erythrocytes similarly to crude Bufo marinus venom. In rat aorta bufalin showed weak and delayed vasoconstrictor activity which was antagonized by 2 microM phentolamine, and had a biphasic effect on the Na+,K(+)-pump; 0.5-1.0 microM bufalin stimulated the pump, while higher concentrations inhibited its activity. Although the effects of bufalin were blocked by antidigoxin antibody, bufalin showed very low digoxin-like immunoreactivity in the DELFIA. These observations suggest that, in addition to bufalin, Bufo marinus venom contains at least one more digitalis-like steroid with significant intrinsic vasoconstrictor activity which, unlike bufalin, constricts the blood vessels acting directly via inhibition of the sodium pump in the vascular smooth muscle membrane.  相似文献   

14.
The alpha-2 subunit abundance of Na+,K(+)-ATPase in the rat heart has been reported to be reduced in several induced hypertensive models. To determine whether this reduction also occurs in a genetic model of hypertension, we studied expression of the alpha subunits in left ventricles of spontaneously hypertensive rats (SHR), and normotensive Wistar-Kyoto (WKY) and Sprague-Dawley rats using Western blotting and quantitative dot-blotting analysis with monoclonal antibodies. While the alpha-1 subunit was not affected in any of the strains, a significant reduction of the alpha-2 subunit expression was noted in 19-week-old SHRs, but not in age-matched WKY and Sprague-Dawley rats, supporting the hypothesis that elevated arterial pressure may differentially downregulate the alpha-2 subunit in the rat heart. To further test this hypothesis we designed experiments in which hypertensive rats were treated with the antihypertensive agents hydralazine and nifedipine. Both agents effectively normalized the blood pressure in the SHRs with no significant effect on the blood pressure in the WKY and Sprague-Dawley rats. The alpha-2 subunit in SHRs treated with hydralazine and nifedipine showed a 63.3% (n = 6, P < 0.05, analysis of variance and Fischer's test) and a 27.4% increase, respectively, over the hypertensive SHR controls, although the reversal effect of nifedipine did not quite reach significance. The alpha-1 subunit expression was not affected by any of the drug treatments. No effect of either of the drugs on the alpha-1 or alpha-2 subunit was observed in the WKY or Sprague-Dawley rat groups. These data support our hypothesis that the alpha-2 subunit may be a pressure-sensitive isoform of the cardiac Na+,K(+)-ATPase and that high blood pressure is, directly or indirectly, responsible for the reduction of the alpha-2 subunit protein expression.  相似文献   

15.
Coronary artery disease often occurs in patients with hypertension. The present study was designed to evaluate coronary vascular function in isolated coronary arteries of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats and to determine the effect of antihypertensive treatment on coronary vascular responsiveness. Male SHR and WKY rats (12 to 14 weeks old) were divided into control and hydralazine-treated (120 mg/L drinking water for 10 days) groups. After 10 days, arterial pressure and heart rate were recorded while rats were conscious and unrestrained. Left ventricular coronary arteries (200 to 300 microns diameter) were isolated and intraluminal diameter was continuously recorded while vessels were maintained at a constant intraluminal pressure of 40 mm Hg. Relaxation of coronary arteries to both acetylcholine and nitroprusside was slightly, but significantly, enhanced in vessels from SHR compared to WKY rats. The enhanced relaxation was a specific effect, since isoproterenol induced similar relaxation in coronary arteries from SHR and WKY rats. Contraction to phenylephrine, but not endothelin-1, was augmented in coronary arteries from SHR compared to WKY rats. Treatment with hydralazine significantly lowered arterial pressure in SHR and WKY rats, but did not alter the enhanced contraction to phenylephrine or the enhanced relaxation to acetylcholine and nitroprusside in coronary arteris from SHR. These results indicate that coronary arteries of 12 to 14 week-old SHR do not have impaired endothelium-dependent relaxation, but to exhibit enhanced alpha-adrenoceptor-mediated contraction that is not reduced by lowering arterial pressure.  相似文献   

16.
BACKGROUND: The ion pump Na+,K(+)-ATPase is responsible for the secretion of cerebrospinal fluid from the choroid plexus. In this tissue, the activity of Na+,K(+)-ATPase is inhibited by serotonin via stimulation of protein kinase C-catalyzed phosphorylation. The choroid plexus is highly enriched in two phosphoproteins which act as regulators of protein phosphatase-1 activity, DARPP-32 and inhibitor-1. Phosphorylation catalyzed by cAMP-dependent protein kinase on a single threonyl residue converts DARPP-32 and inhibitor-1 into potent inhibitors of protein phosphatase-1. Previous work has shown that in the choroid plexus, phosphorylation of DARPP-32 and I-1 is enhanced by isoproterenol and other agents that activate cAMP-PK. We have now examined the possible involvement of the cAMP-PK/protein phosphatase-1 pathway in the regulation of Na+,K(+)-ATPase. MATERIALS AND METHODS: The state of phosphorylation of Na+,K(+)-ATPase was measured by determining the amount of radioactivity incorporated into the ion pump following immunoprecipitation from 32P-prelabeled choroid plexuses incubated with various drugs (see below). Two-dimensional phosphopeptide mapping was employed to identify the protein kinase involved in the phosphorylation of Na+,K(+)-ATPase. RESULTS: The serotonin-mediated increase in Na+,K(+)-ATPase phosphorylation is potentiated by okadaic acid, an inhibitor of protein phosphatases-1 and -2A, as well as by forskolin or the beta-adrenergic agonist, isoproterenol, activators of cAMP-dependent protein kinase. Two-dimensional phosphopeptide maps suggest that this potentiating action occurs at the level of a protein kinase C phosphorylation site. Forskolin and isoproterenol also stimulate the phosphorylation of DARPP-32 and protein phosphatase inhibitor-1, which in their phosphorylated form are potent inhibitors of protein phosphatase-1. CONCLUSIONS: The results presented here support a model in which okadaic acid, forskolin, and isoproterenol achieve their synergistic effects with serotonin through phosphorylation of DARPP-32 and inhibitor-1, inhibition of protein phosphatase-1, and a reduction of dephosphorylation of Na+,K(+)-ATPase at a protein kinase C phosphorylation site.  相似文献   

17.
The effects of 1 microM concentrations of arachidonic acid hydroperoxide (HPETES) products of 5-, 12- and 15-lipoxygenase on Na+, K(+)-ATPase activity were investigated in synaptosomal membrane preparations from rat cerebral cortex. 5-HPETE inhibited Na+, K(+)-ATPase activity by up to 67 %. In contrast, 12-HPETE and 15-HPETE did not inhibit Na+, K(+)-ATPase activity. In addition, neither 5-HETE or LTA4 inhibited Na+, K(+)-ATPase activity. Dose-response studies indicated that 5-HPETE was a potent (IC25 = 10(-8) M) inhibitor of Na+, K(+)-ATPase activity. These findings indicate that 5-HPETE inhibits Na+, K(+)-ATPase activity by a mechanism that is dependent on the hydroperoxide position and independent of further metabolism by 5-lipoxygenase. It is proposed that 5-HPETE production by 5-lipoxygenase and subsequent inhibition of neuronal Na+, K(+)-ATPase activity may be a mechansim for modulating synaptic transmission.  相似文献   

18.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

19.
Increased activity of the Na(+)-H+ exchanger (NHE-1 isoform) has been observed in cells and tissues from hypertensive humans and animals, including the spontaneously hypertensive rat (SHR). No mutation in NHE-1 DNA sequence or alteration in NHE-1 mRNA and protein expression has been demonstrated in hypertension, indicating that alterations in proteins that regulate NHE-1 activity are responsible for increased activity. The recent finding that NHE-1 phosphorylation in SHR vascular smooth muscle cells (VSMCs) was greater than in Wistar-Kyoto rat (WKY) VSMCs suggested that NHE-1 kinases may represent an abnormal regulatory pathway present in hypertension. To define NHE-1 kinases altered in the hypertensive phenotype. We measured NHE-1 kinase activity by an in-gel-kinase assay using a recombinant glutathione S-transferase NHE-1 fusion protein as a substrate. At least 7 NHE-1 kinases (42 to 90 kD) were present in VSMCs. We studied a 90-kD kinase because it was the major NHE-1 kinase and exhibited differences between SHR and WKY. Comparison of 90-kD kinase activity revealed that SHR VSMCs had increased activity in growth-arrested cells and in cells stimulated by angiotensin II (100 nmol/L for 5 minutes). Activation of the 90-kD kinase by angiotensin II was Ca2+ dependent, PKC independent, and partially dependent on the mitogen-activated protein kinase pathway. These findings indicate that increased activity of a 90-kD NHE-1 kinase is a characteristic of SHR VSMCs in culture and suggest that alterations in the 90-kD NHE-1 kinase and/or proteins that regulate its activity may be a pathogenic component in hypertension in the SHR.  相似文献   

20.
The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. L-Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 microM. Both L- and D-aspartate, but not D-glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain (K0.5 = 113 microM), compatible with the presence of an alpha1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain (K0.5 = 20 nM), thus revealing a high-affinity site akin to the alpha2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号