首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The way in which the brain integrates fragmentary neural events at multiple locations to produce unified perceptual experience and behaviour is called the binding problem. Binding has been proposed to involve correlated activity at different cortical sites during perceptuomotor behaviour, particularly by synchronization of narrow-band oscillations in the gamma-frequency range (30-80 Hz). In the rabbit olfactory system, inhalation induces increased gamma-correlation between sites in olfactory bulb and cortex. In the cat visual system, coherent visual stimuli increase gamma-correlation between sites in both the same and different visual cortical areas. In monkeys, some groups have found that gamma-oscillations transiently synchronize within striate cortex, superior temporal sulcus and somatosensorimotor cortex. Others have reported that visual stimuli produce increased broad-band power, but not gamma-oscillations, in several visual cortical areas. But the absence of narrow-band oscillations in itself does not disprove interregional synchronization, which may be a broad-band phenomenon. We now describe episodes of increased broad-band coherence among local field potentials from sensory, motor and higher-order cortical sites of macaque monkeys performing a visual discrimination task. Widely distributed sites become coherent without involving other intervening sites. Spatially selective multiregional cortical binding, in the form of broad-band synchronization, may thus play a role in primate perceptuomotor behaviour.  相似文献   

2.
Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception-related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal much about the neural mechanisms of our perceptual organization.  相似文献   

3.
Selective visual attention can strongly influence perceptual processing, even for apparently low-level visual stimuli. Although it is largely accepted that attention modulates neural activity in extrastriate visual cortex, the extent to which attention operates in the first cortical stage, striate visual cortex (area V1), remains controversial. Here, functional MRI was used at high field strength (3 T) to study humans during attentionally demanding visual discriminations. Similar, robust attentional modulations were observed in both striate and extrastriate cortical areas. Functional mapping of cortical retinotopy demonstrates that attentional modulations were spatially specific, enhancing responses to attended stimuli and suppressing responses when attention was directed elsewhere. The spatial pattern of modulation reveals a complex attentional window that is consistent with object-based attention but is inconsistent with a simple attentional spotlight. These data suggest that neural processing in V1 is not governed simply by sensory stimulation, but, like extrastriate regions, V1 can be strongly and specifically influenced by attention.  相似文献   

4.
The neural mechanisms of visual binding in humans were investigated by measuring the brain's high-frequency electric responses (36-44 Hz) to the subjective visual perception of a unified three-dimensional illusion. 40 Hz synchronization was found over occipital and right parieto-temporal areas 500-300 ms before visual awareness of the three-dimensional Gestalt was reported, but not during the viewing of the illusion. At lower frequency bands (8-13 Hz and 13-20 Hz) no corresponding synchronization was found. 40 Hz synchronization thus directly correlates with the construction and emergence of a unified visual percept and may reflect the rapid formation of transient functional connections between spatially separated cortical areas.  相似文献   

5.
The McCollough effect, an orientation-contingent color aftereffect, has been known for over 30 years and, like other aftereffects, has been taken as a means of probing the brain's operations psychophysically. In this paper, we review psychophysical, neuropsychological, and neuroimaging studies of the McCollough effect. Much of the evidence suggests that the McCollough effect depends on neural mechanisms that are located early in the cortical visual pathways, probably in V1. We also review evidence showing that the aftereffect can be induced without conscious perception of the induction patterns. Based on these two lines of evidence, it is argued that our conscious visual experience of the world arises in the cortical visual system beyond V1.  相似文献   

6.
In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.  相似文献   

7.
Working memory enables us to hold in our 'mind's eye' the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain-imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on-line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image-based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long-term memory.  相似文献   

8.
Humans are readily able to distinguish expected and unexpected sensory events. Whether a single mechanism underlies this ability is unknown. The most common type of expected sensory events are those generated as a consequence of self-generated actions. Using H2 15O PET, we studied brain responses to such predictable sensory events (tones) and to similar unpredictable events and especially how the processing of predictable sensory events is modified by the context of a causative self-generated action. Increases in activity when the tones were unpredictable were seen in the inferior and superior temporal lobe bilaterally, the right parahippocampal gyrus and right parietal cortex. Self-generated actions produced activity in a number of motor and premotor areas, including dorsolateral prefrontal cortex. We observed an interaction between the predictability of stimuli and self-generated actions in several areas, including the medial posterior cingulate cortex, left insula, dorsomedial thalamus, superior colliculus and right inferior temporal cortex. This modulation of activity associated with stimulus predictability in the context of self-generated actions implies that these areas may be involved in self-monitoring processes. Detection of expected stimuli and the detection of the sensory consequences of self-generated actions appear to be functionally distinct processes, and are carried out in different cortical areas. These observations support theoretical approaches to cognition that postulate the existence of a self-monitoring system.  相似文献   

9.
We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual–motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

10.
Brain damage in the visual system can lead to apparently blind visual areas. However, more elaborate testing indicates that some visual ability may still exist for specific stimuli in the otherwise blind regions. This phenomenon is called 'blindsight' if subjects report no conscious awareness of visual stimuli but when forced to guess, nevertheless perform better than chance. It has mainly been suggested that secondary visual pathways are responsible for this phenomenon. However, no published study has clearly shown the neural mechanism responsible for blindsight. Furthermore, experimental artifacts may have been responsible for the appearance of the phenomenon in some subjects. In the present study, the visual fields of nine subjects were mapped and residual visual performance was examined in many areas using three different experimental procedures. Artifacts such as stray light or eye movements were well controlled. In addition, confidence ratings were required after each trial in the forced-choice tests. The results show that only one subject with a lesion in the optic radiation had blindsight in two discrete areas of the affected visual field. Spared optic radiation fibers of the main (primary) geniculo-striate visual pathway were most likely to account for this finding.  相似文献   

11.
12.
Experiments using behavioural, lesion, functional imaging and single neuron methods are considered in the context of a neuropsychological model of visual attention. According to this model, inputs compete for representation in multiple visually responsive brain systems, sensory and motor, cortical and subcortical. Competition is biased by advance priming of neurons responsive to current behavioural targets. Across systems competition is integrated such that the same, selected object tends to become dominant throughout. The behavioural studies reviewed concern divided attention within and between modalities. They implicate within-modality competition as one main restriction on concurrent stimulus identification. In contrast to the conventional association of lateral attentional focus with parietal lobe function, the lesion studies show attentional bias to be a widespread consequence of unilateral cortical damage. Although the clinical syndrome of unilateral neglect may indeed be associated with parietal lesions, this probably reflects an assortment of further deficits accompanying a simple attentional imbalance. The functional imaging studies show joint involvement of lateral prefrontal and occipital cortex in lateral attentional focus and competition. The single unit studies suggest how competition in several regions of extrastriate cortex is biased by advance priming of neurons responsive to current behavioural targets. Together, the concepts of competition, priming and integration allow a unified theoretical approach to findings from behavioural to single neuron levels.  相似文献   

13.
Somatic sensory, auditory and visual areas of cerebral neocortex were mapped in anesthetized capybaras using surface macroelectrode-evoked potential recording methods. The cortical motor area was mapped using electrical stimulation methods. The results of these experiments in the largest living rodent were similar to those found for the cortical sensory and motor areas of guinea pigs, a small rodent in a closely related family. The representation of the perioral skin in SI cortex was relatively large in capybaras and guinea pigs. In capybara, several cortical sulci reliably demarcate different cortical projection areas from one another. Quantitive neuroanatomical comparisons of volumes and neuron numbers in several major prosencephalic nuclei revealed that all nuclear masses are larger in capybara than in guinea pig, but that different nuclei are enlarged to different degrees. Possible causes of larger brains in larger animals are discussed.  相似文献   

14.
Self-motion or object motion can elicit optokinetic nystagmus (OKN), which is an integral part of dynamic spatial orientation. We used functional MR imaging during horizontal OKN to study cerebral activation patterns in sensory and ocular motor areas in 10 subjects. We found activation bilaterally in the primary visual cortex, the motion-sensitive areas in the occipitotemporal cortex (the middle temporal and medial superior temporal areas), and in areas known to control several types of saccades such as the precentral and posterior median frontal gyrus, the posterior parietal cortex, and the medial part of the superior frontal gyrus (frontal, parietal, and supplementary eye fields). Additionally, we observed cortical activation in the anterior and posterior parts of the insula and in the prefrontal cortex. Bilateral activation of subcortical structures such as the putamen, globus pallidus, caudate nucleus, and the thalamus traced the efferent pathways of OKN down to the brainstem. Functional MRI during OKN revealed a complex cerebral network of sensorimotor cortical and subcortical activation.  相似文献   

15.
A study of the electrical activity (background and at sensory stimulation) of the motor and visual areas of the cortex, hippocampus, septum (in some cases the lateral geniculate body and the midbrain reticular formation) was carried out on rabbits by the method of spectral-correlation analysis. The method of driving reactions to electrical stimulation of the lateral and medial nuclei of the septum was used to investigate its functional role as a pace-maker. The spectograms of all the analyzed areas of the brain showed the presence of acquired rhythms during electrical stimulation at 4-30 Hz. The acquired rhythm was most prominent in cortical potentials. It is assumed that the generation of rhythmical cortical activity is due to physiological interaction of the cortex and septum.  相似文献   

16.
Theories of emotion postulate that emotional input is processed independently from perceptual awareness. Although visual masking has a long tradition in studying whether emotional pictures are processed below a supposed threshold of perceptual awareness (subliminal perception), a consensus has yet to be reached. This article reviews current concerns in the use of visual masking. These include a reliable presentation method, the role of masking pictures, common definitions of awareness and their problems, current models of awareness, and neural mechanisms. A useful strategy may be the study of dose-response relationships between awareness and emotion processing that avoids a dichotomous view of awareness and allows conclusions about the relative independence of emotional processing from awareness. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
We used high-field (3T) functional magnetic resonance imaging (fMRI) to label cortical activity due to visual spatial attention, relative to flattened cortical maps of the retinotopy and visual areas from the same human subjects. In the main task, the visual stimulus remained constant, but covert visual spatial attention was varied in both location and load. In each of the extrastriate retinotopic areas, we found MR increases at the representations of the attended target. Similar but smaller increases were found in V1. Decreased MR levels were found in the same cortical locations when attention was directed at retinotopically different locations. In and surrounding area MT+, MR increases were lateralized but not otherwise retinotopic. At the representation of eccentricities central to that of the attended targets, prominent MR decreases occurred during spatial attention.  相似文献   

18.
We wanted to examine whether there are cortical fields active in short-term retention of sensory information, independent of the sensory modality. To control for selective attention, response selection and motor output, the cortical activity during short-term memory (STM) tasks was compared with that during detection (DT) tasks. Using positron emission tomography and [15O]-butanol as a tracer, we measured the regional cerebral blood flow in ten subjects during three STM tasks in which the subjects had to keep in mind: (i) the pitch of tones; (ii) frequencies of a vibrating stylus; and (iii) luminance levels of a monochrome light. Another group of ten subjects undertook three tasks in which subjects detected changes in similar stimuli. Six cortical fields were significantly more activated during STM than during DT. These fields were activated irrespective of sensory modality, and were located in the left inferior frontal gyrus, right superior frontal gyrus, right inferior parietal cortex, anterior cingulate, left frontal operculum and right ventromedial prefrontal cortex. Since the DT tasks and the STM tasks differed only with respect to the STM component, we conclude that the neuronal activity specifically related to retention of the stimuli during the delays was located in these six multi-modal cortical areas. Since no differences were observed in the sensory-specific association cortices, the results indicate further that the activity in the sensory-specific association cortices due to selective attention is not different from the activity underlying short-term retention of sensory information.  相似文献   

19.
The theory of multistage integration is based on evidence that the visual brain consists of several parallel multistage processing systems, each specialized for a given attribute such as colour or motion. Each stage of a given system processes information at a distinct level of complexity. Our theory supposes that activity at any stage of a given multistage processing system is perceptually explicit--that is to say, it requires no further processing to generate a conscious experience. This activity can be integrated, or bound, with the perceptually explicit activity at any given stage of another or the same multistage processing system. Such binding is therefore not a process that generates a conscious experience, but rather one that brings different conscious experiences together. Many perceptual advantages result from such a flexible and dynamic integrative system. Conversely, there would be disadvantages to limiting perception and binding to hypothetical 'terminal' stages of such processing systems or to hypothetical 'integrator' areas. Although we formulate our hypothesis in terms of the visual brain, we believe it might form a general principle of brain functioning.  相似文献   

20.
Brain activity exclusively related to a temporal delay has rarely been investigated using modern brain imaging. In this study we exploited the temporal resolution of functional magnetic resonance imaging (fMRI) to characterise, by sinusoidal regression analysis, differential neuroactivation patterns induced in healthy subjects by two sensorimotor synchronization tasks different in their premovement delay of either 0.6 s or 5 s. The short event rate condition required rhythmic tapping, while the long event rate condition required timing of intermittent movements. Left rostral prefrontal cortex, medial frontal cortex, SMA and supramarginal gyrus demonstrated increased MR signal intensity during low frequency synchronization, suggesting that these brain regions form a distributed neural network for cognitive time management processes, such as time estimation and motor output timing. Medial frontal cortex showed a biphasic pattern of response during both synchronization conditions, presumably reflecting frequency-independent motor output related attention. As predicted, sensorimotor and visual association areas demonstrated increased MR signal intensity during high frequency synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号