首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitting behavior of SiCp/2024 Al metal matrix composites   总被引:5,自引:0,他引:5  
The effects of the volume fraction of SiC particulate reinforcements and the concentration of chloride ions in solution on the localized corrosion characteristics of SiCp/2024 Al metal matrix composites (MMC) were investigated. A scanning micro reference electrode (SMRE) technique was employed to study the dynamic process of pitting initiation and development on the surface of the composites at open-circuit potential. Potentiodynamic polarizations were performed to characterize the electrochemical behavior of the MMCs. The morphology of the localized attack on the MMC sample after corrosion tests were examined by scanning electron microscopy (SEM). The results of electrochemical measurement showed that the composites were less resistant to pit initiation than the corresponding unreinforced metrix alloy. Increase in the volume fraction of SiCp reinforcement in the SiCp/2024 Al composites resulted in a significant decrease of pitting potential. In situ potential mapping of active centers on the surfaces of the composites revealed that local breakdown of passivity and initiation of micro pitting corrosion could take place even at an open-circuit potential which was more negative than the pitting potential, and the number of active centers on the surfaces of the composites increased as the volume fraction of SiC particulates in MMCs increased. Micro-structural analysis indicated that pitting attack on the composites mainly occurred at SiCp-Al interfaces or inclusions-Al interfaces.  相似文献   

2.
We investigate dynamic fracture of three types of multiwalled carbon nanotube (MWCNT)/epoxy composites and neat epoxy under high strain-rate loading (105106 s−1). The composites include randomly dispersed, 1 wt%, functionalized and pristine CNT/epoxy composites, as well as laminated, ∼50 wt% CNT buckypaper/epoxy composites. The pristine and functionalized CNT composites demonstrate spall strength and fracture toughness slightly higher and lower than that of neat epoxy, respectively, and the spall strength of laminated CNT buckypaper/epoxy composites is considerably lower; both types of CNTs reduce the extent of damage. Pullout, sliding and immediate fracture modes are observed; the fracture mechanisms depend on the CNT–epoxy interface strength and fiber strength, and other microstructures such as the interface between CNT laminates. Compared to the functionalized CNT composites, weaker CNT–epoxy interface strength and higher fiber strength lead to a higher probability of sliding fracture and higher tensile strength in the pristine CNT composites at high strain rates. On the contrary, sliding fracture is more pronounced in the functionalized CNT composites under quasistatic loading, a manifestation of a loading-rate effect on fracture modes. Despite their helpful sliding fracture mode and large CNT content, the weak laminate–laminate interfaces play a detrimental role in fracture of the laminated CNT buckypaper/epoxy composites. Regardless of materials, increasing strain rates leads to pronounced rise in tensile strength and fracture toughness.  相似文献   

3.
采用浸泡模拟实验方法、电化学极化和电化学阻抗谱测试技术,研究了Cl~-浓度对SiC_P/Al复合材料电化学腐蚀行为的影响。结果表明:SiC_P/Al复合材料在Cl~-介质下钝化现象不明显,腐蚀过程主要为点蚀腐蚀。随Cl~-浓度增加,SiC_P/Al复合材料腐蚀速率增加,点蚀电位降低,且复合材料的腐蚀过程机制表现为由单纯电荷传递过程机制向电荷传递过程与腐蚀产物扩散共同作用的混合机制转变。电化学阻抗谱随Cl~-浓度增加呈现出2种类型:单一容抗弧类型、高频区容抗弧和低频区一条与实轴呈45°直线(经典Warburg阻抗)组合的复合类型。  相似文献   

4.
2D-SiC/SiC复合材料拉伸加卸载行为   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究国产2D-SiC/SiC复合材料的拉伸损伤行为以及低周循环载荷作用下的力学性能,通过试验和建立加卸载细观力学模型,对其拉伸加卸载行为进行了探讨。建立了单向连续纤维增强陶瓷基复合材料加卸载细观力学模型,得到了初始加载、卸载和重新加载时的应力-应变关系;利用断裂统计方法得到了基体裂纹数随应力变化的关系和复合材料失效判断条件。经过应力转化,将该模型应用于国产二维编织SiC/SiC复合材料。对单向加载试件,采用正交试验方法和最小二乘法得到基体Weibull模量和界面剪切阻力,通过控制材料失效强度与试验结果一致,得到纤维Weibull模量。由上述参数确定的2D-SiC/SiC复合材料拉伸循环加卸载应力-应变曲线与实测曲线吻合很好。通过Matlab编程得到2D-SiC/SiC复合材料单向加载时基体开裂过程图。结果表明,2D-SiC/SiC复合材料失效时,基体裂纹分布相对比较均匀;基体裂纹数随应力单调增加,未出现持平段,表明材料失效时,基体裂纹还没有达到饱和。  相似文献   

5.
This paper presents a simplified analysis (model and failure criteria) for predicting the stress-strain responce of cross-ply fiber-reinforced ceramic composite laminates under quasi-static loading and unloading conditions. The model formulation is an extension of the modified shear-lag theory previously introduced by the authors for analyzing unidirectional laminates for the same loading conditions. The present formulation considers a general damage state consisting of matrix cracking in both the transverse and longitudinal plies, as well as fiber failure. These damage modes are modeled by a set of failure criteria with the minimum reliance on empirical data, and can be easily employed in a variety of numerical or analytical methods. The criteria used to estimate the extent of matrix cracking and interfacial debonding are closed-form and require the basic material properties. The failure criterion for fiber failure requires a priori knowledge of a single empirical constant. This parameter, however, may be determined without microscopic investigation of the laminate microstructure. The results from the present simplified analysis match well with the experimental data.The U.S. Government right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

6.
利用无压浸渗法制备高体积分数的SiCp/Al复合材料。采用X射线衍射(XRD)和扫描电镜(SEM)对复合材料的相组成、微观组织及断口形貌进行分析,研究了基体合金成分对复合材料抗弯性能的影响。结果表明,以Al-10%Si-8%Mg合金为基体制备的复合材料组织均匀,致密度好,无明显气孔缺陷,界面反应产物为Mg2Si、MgAl2O4和Fe,且抗弯强度高于以Al-10%Si合金为基体制备的复合材料;复合材料整体上表现出脆性断裂的特征。  相似文献   

7.
SiC颗粒增强铝基复合材料冲击拉伸力学性能的试验研究   总被引:5,自引:1,他引:5  
对SiC颗粒增强铝基复合材料在应变速率为150~1000s^-1范围内的冲击拉伸力学性能进行了试验研究,得到了材料从弹塑变形直至断裂的完整的应力应变曲线,结果表明SiC颗粒增强铝基复合材料是一种应变率敏感材料,随着应变速率的提高,材料的屈服应力,破坏应力以及破坏应变均为相应提高,断口分析表明,SiCp/Al的破坏形式的比较复杂,是一种颗粒的脆性破坏与铝合金基体的韧性破坏共存,强界面与弱界面共存的混  相似文献   

8.
Tensile behaviour of FRC under high strain-rate   总被引:1,自引:1,他引:0  
This paper presents experimental results on two types of concrete reinforced with steel and polyvinyl-alcohol (PVA) fibres subjected to dynamic tensile loading. The tests were carried out by using a Modified Hopkinson Bar apparatus on fibre reinforced concrete notched-specimens under three different strain-rates (50, 100, and 200 s−1). From the experiments it was found that there is a significant enhancement in tensile strength with increasing strain-rates. The dynamic tests on steel FRC with the smaller loading rate (50 s−1) showed a strength similar to the one measured from static tests; however, for increasing loading rates, a remarkable decrease of post-peak strength and ductility occurs. In specimens with PVA fibres, an enhancement of the tensile strength was also observed and a significant reduction of fracture energy and ultimate deformation occurred. Some experimental aspects are also discussed as the specimen shape, its dimension, the loading rate as well as the different post-peak behaviour from static and dynamic tests.  相似文献   

9.
High ductility and increased strength of SiCp/Al composites are highly desirable for their applications in complicated components. However, high ductility and high strength are mutually exclusive in high volume fraction SiCp/Al composites. Here, we report a novel nanostructuring strategy that achieves SiCp/Al–Sc–Zr composites with superior maximum tensile strain and enhanced tensile strength. The new strategy is based on combination of grain refinement down to ultra-fine scale with nanometric particles inside the grain through adding distinctive elements (Sc, Zr) and refining nucleation centers to nanoscale under the action of high volume fraction reinforcement during the fabrication process. The nanostructured SiCp/Al–Sc–Zr composites had an increase of ∼300% in maximum tensile strain and a 21% increase in tensile strength. This thought provides a new sight into enhancement of both strength and ductility of particle reinforcement metal matrix composites.  相似文献   

10.
The coefficients of thermal expansion (CTEs) of 20 vol% SiCp/Al composites fabricated by powder metallurgy process were measured and examined from room temperature to 450 °C. The SiC particles are in three nominal sizes 5, 20 and 56μm. The CTEs of the SiCp/Al composites were shown to be apparently dependent on the particle size. That the larger particle size, the higher CTEs of the composites, is thought to be due to the difference in original thermal residual stresses and matrix plasticity during thermal loading. At low temperature, the experimental CTEs show substantial deviation from the prediction of the elastic analysis derived by Kerner and rule of mixture (ROM), while the Kerner’s model agrees relatively well at high temperatures for the composite with the larger particle size.  相似文献   

11.
针对连续石墨纤维增强铝基(CF/Al)复合材料,采用三种纤维排布方式的代表体积单元(RVE)建立了其细观力学有限元模型,采用准静态拉伸试验与数值模拟结合的方法,研究了其在轴向拉伸载荷下的渐进损伤与断裂力学行为。结果表明,采用基体合金和纤维原位力学性能建立的细观力学有限元模型,对轴向拉伸弹性模量和极限强度的计算结果与实验结果吻合良好,而断裂应变计算值较实验结果偏低。轴向拉伸变形中首先出现界面和基体合金损伤现象,随应变增加界面发生失效并诱发基体合金的局部失效,最后复合材料因纤维发生失效而破坏,从而出现界面脱粘后纤维拔出与基体合金撕裂共存的微观形貌。细观力学有限元分析结果表明,在复合材料制备后纤维性能衰减而强度较低条件下,改变界面强度和刚度对复合材料轴向拉伸弹塑性力学行为的影响较小,复合材料中纤维强度水平是决定该复合材料轴向拉伸力学性能的主要因素。  相似文献   

12.
Tri-dimensional woven SiC/SiC composite was subjected to quasi-static indentation tests at room temperature. For this purpose, hemispherical indentors and circular supports of various diameters were used. The extent of damage was evaluated with the help of optical and scanning electron microscopy. Formation of cone cracks initiating from the indented site is observed. The predominant internal damages (fibre bundle and matrix cracking) remain localised beneath the indentor. The indented specimens were tensile tested at room temperature to determine their residual strength. Results indicate that the strength reduction is proportional to the diameter of the damaged zone evaluated on the back side of the specimen.  相似文献   

13.
泡沫SiC颗粒增强铝基复合材料的制备工艺和拉伸强度   总被引:5,自引:0,他引:5  
介绍了一种新的泡沫金属材料-泡沫SiC颗粒增强铝基复合,泡沫的孔隙率为60%-85%。用TiH2作发泡剂,采用直接发泡工艺制备。由于复合材料熔体自身粘度较大,不需要采用任何增粘措施,发泡工艺简单,易于操作,该泡沫材料比普通泡沫铝或铝合金具有更高的抗拉、抗压强度。  相似文献   

14.
对高体积分数碳化硅颗粒增强铝基(SiCP/Al)复合材料的拉伸强度进行了试验研究。发现在较高应力水平下经过2次卸载的试件与未做卸载的试件相比,拉伸强度变化很小,说明加载-卸载过程对材料的拉伸强度影响不大。在试验研究的基础上,使用ANSYS软件建立了有限元模型,对SiCP/Al复合材料的拉伸特性进行了仿真模拟。研究结果表明,低体积分数SiCP/Al复合材料的力学性能更接近塑性材料;而高体积分数SiCP/Al复合材料的力学性能则接近于脆性材料。拉伸强度模拟计算误差非常小,基体破坏是导致高体积分数SiCP/Al复合材料破坏的主要因素。  相似文献   

15.
The influence of loading rate on the tensile stress-strain behaviour of cementitious composites was studied experimentally. The project was undertaken to obtain an insight into the possible relation between internal structure parameters of composites and their loading-rate sensitivity. Five different types of cementitious composites were applied. Composite structure data were obtained by testing porosity and by quantitative observation of fracture surfaces. Direct tensile tests were performed at four different loading rates within the range 0.001–1000 MPa s–1. The tensile stress-strain behaviour was significantly influenced by the loading rate and structure parameters of composites. The relative tensile strength increase due to an increase of loading rate was found to be higher for composites with higher total porosity. Recorded stress-strain diagrams obtained at various loading rates are presented and discussed with the aid of continuous damage mechanics.  相似文献   

16.
利用空气气氛下的无压渗透法制备了高体积分数的SiCp/Al复合材料,研究了颗粒粒径、基体合金成分、预处理工艺对复合材料抗弯性能的影响,并采用SEM观测了复合材料抗弯断口形貌.结果表明,SiCp/Al复合材料的抗弯强度随着SiC颗粒粒径减小而增大;基体材料的强度越高,复合材料的抗弯强度越高;复合材料整体上表现出脆性断裂的特征.  相似文献   

17.
SiCp/Al复合材料具备一系列优异的物理性能,是航空航天、电子封装、装备、核电、汽车、轨道交通等国家重大需求和国民经济装备制造所需的关键材料.但是,工业精密仪器关键零部件对SiCp/Al复合材料的性能要求相对较高,导致复合材料在诸多高端领域的应用受到了严重限制,因而提升SiCp/Al复合材料的整体性能是当前亟需解决的重要难题.对于给定的增强体与基体,界面相具有的微观结构和物化性质是影响SiCp/Al复合材料性能的决定因素.然而,界面相在形成过程中通常会出现润湿性差、结构缺陷多以及生成不良界面产物等问题,对SiCp/Al复合材料的性能产生了严重的负面影响.因此,有效实现界面的可控设计成为提升复合材料性能的关键.根据近几年关于SiCp/Al复合材料界面调控的研究工作来看,增强体颗粒表面改性在抑制增强体与基体之间的相互扩散以及减缓化学反应速率等方面发挥着重要作用,而表面改性处理的方式通常包括酸洗、高温氧化和添加涂层等.在基体中添加合金元素能够有效降低铝液的表面张力,改善SiCp/Al复合材料界面相的润湿性,同时可抑制不良界面反应的发生.目前合金化处理添加的元素通常包括Mg、Si、Cr、Ti、Fe等.在SiCp/Al复合材料的制备过程中,烧结温度、保温时间、冷却速率、成型压力、球磨时间以及烧结气氛等成型工艺参数均会影响界面的反应程度,因而对成型工艺的优化改进同样能够有效调控复合材料的界面信息,以实现对SiCp/Al复合材料性能的提升.本文结合SiCp/Al复合材料界面相具有的微观结构和物化性质,从增强体颗粒表面改性、基体合金化和成型工艺优化改进三个角度综述了SiCp/Al复合材料界面调控的研究现状,并对其未来发展的整体趋势进行了展望.  相似文献   

18.
《Composites Part A》2003,34(3):291-299
In the present study, the chemical reaction of SiCp/Al composites during multiple remelting above the liquidus was investigated using Differential Scanning Calorimetry and Transmission Electron Microscope. The experimental results indicated that the chemical reaction of SiC particles increased with increasing remelting temperature and the number of recycling runs. After reaching a certain degree of reaction, no further change occurred during subsequent remelting. The chemical reaction in SiCp/Al composite during multiple remelting could be suppressed by controlling the remelting temperature when silicon was present in the aluminum matrix. When 8 wt% silicon was added to the aluminum matrix, the chemical reaction between SiC particles and aluminum was completely suppressed even during multiple remelting above the liquidus.  相似文献   

19.
SiCp/Al复合材料的化学镀镍   总被引:1,自引:0,他引:1  
李丽波  安茂忠  武高辉 《功能材料》2005,36(7):1093-1096
采用化学镀技术对高体分SiC颗粒增强铝基复合材料(SiCp/Al)表面进行改性以改善其焊接性能和抛光性能。本文探索了在SiCp/Al表面化学镀镍的预处理工艺及条件,系统分析并阐述了除油、粗化、活化等工序对化学镀镍的作用和影响,同时在最优的条件下成功地制备出光亮、均匀、完整且与基体结合良好的镍磷合金镀层。利用扫描电子显微镜(SEM)、能谱(EDAX)对镀层微观结构和成分进行表征。结果表明,预处理可以改变基体表面的结构形貌,影响镍磷合金镀层在其表面的分布,从而对镀层质量、结合强度及沉积速度起决定性作用。  相似文献   

20.
Polytypism of SiC and interfacial structure in SiCp/Al composites   总被引:1,自引:0,他引:1  
In the present work, the polytypism of SiC and the interfacial structure between SiC and Al were investigated using X-ray diffraction (XRD) and high resolution transmission electron microscopy (HREM). It was approved that 15R could be juxtaposed with 6H stacking sequences in the same SiC reinforcement and a structural transformation zone was also observed. The Al4C3 compound can nucleate on SiC at the SiC/Al interface with the growth orientation parallel to the C axis of SiC. Mechanisms for the observed phenomena were also discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号