首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
Based on the basic equations of two-dimensional, transversely isotropic, piezoelectric elasticity, a group of general solutions for body force problem is obtained. And by utilizing this group of general solutions and employing the body potential theory and the integral method, the closed-form solutions of displacements and electric potential for an infinite piezoelectric plane loaded by point forces and point charge are acquired. Therefore, the fundamental solutions, which are very important and useful in the boundary element method (BEM), are presented.  相似文献   

2.
The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.  相似文献   

3.
Generalized impedance boundary conditions are employed to simplify the solution of the Sommerfeld half-space problem. An analytical expression is derived for the Hertz potential of a vertical electric dipole over the earth’s surface, in which the earth is assumed to be a layered media or homogeneous dissipative half-space.A Sommerfeld type integral in the potential function is expressed as the sum of two parts: a zeroth order Hankel function and an absolutely convergent series of Bessel functions. In addition, two expressions in closed form are obtained as the far-field and near-field approximation of the present result.  相似文献   

4.
Based on three-dimensional elastic equations for piezoelectric materials, the state equations for piezoelectric circular plate under axisymmetric deformation are derived. Applying Hankel transform to them and letting the free boundary terms resulting from Hankel transform be zero, a set of ordinary differential equations with constant coefficients and associated boundary conditions are obtained. Furthermore, two exact solutions corresponding to generalized rigid slipping and generalized elastic simple support are deduced. Then, the governing equations obtained reduce to equations for axisymmetric problem of transversely isotropic circular plate. Under the two types of boundary conditions of elastic simple support and rigid slipping, exact solutions are derived. Finally, numerical results are presented and applicability of the classical plate theory is discussed.  相似文献   

5.
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.  相似文献   

6.
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot’s classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.  相似文献   

7.
The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.  相似文献   

8.
Smoothed Particle Hydrodynamics (SPH) is a powerful tool for large deformation computation of soil flow. However, the method to simulate frictional contact in the framework of SPH is still absent and needs to be developed. This paper presents an algorithm to simulate frictional contact between soil and rigid or deformable structure in the framework of SPH. In this algo-rithm, the computational domain is divided into several sub-domains according to the existing contact boundaries, and contact forces are used as bridges of these sub-domains to fulfill problem solving. In the process of the SPH discretization for govern-ing equation of each sub-domain, the inherent problem of boundary deficiency of SPH is handled properly. Therefore, the par-ticles located at contact boundary can have precise acceleration, which is critical for contact detection. Then, based on the as-sumption that the SPH particle of soil can slightly penetrate into the structure, the contact forces along normal and tangential directions of the contact surface are computed by momentum principle, and the frictional force is modified if sliding occurs.Compared with previous methods, in which only particle-to-particle contact is considered or frictional sliding is just ignored,the method proposed in this study is more efficient and accurate, and is suitable for simulating interaction between soft materi-als and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests have been carried out to verify the accuracy and stability of the proposed algorithm, and the results have been compared with ana-lytical solutions or FEM results. The consistency obtained from these comparisons indicates that the algorithm is robust and can enhance the computing capability of SPH.  相似文献   

9.
The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.  相似文献   

10.
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test (HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.  相似文献   

11.
The dynamic analysis of saturated poroelastic media is significant in many areas such as seismology, earthquake engineering, soil mechanics and geophysics. In 1956, Biot[1—3] first developed the dynamic equations for saturated poroelastic media. He also discussed systematically the propagation of waves in such two-phase media and further predicted the existence of the slow longitudinal wave. Biots work is consummate while the two formal parameters he introduced are difficult to measure. In t…  相似文献   

12.

弹性球压入单涂层半空间解析解

李一全,李晓舟,许金凯,于化东

(长春理工大学 机电工程学院,长春 130022)

中文摘要:

本文针对弹性球压入表面涂层半空间的接触问题,在单涂层半空间表面作用法向集中力的基本解基础上进行了理论分析。接触区域内压力分布采用Hertz假定,利用叠加原理构造了级数解。通过与有限元结果对比分析,可知解析解具有很快的收敛速度,而且应力和位移主要取决于级数解首项,即Hertz接触压力下均质弹性半空间的理论解。利用本文的解析方法,可以预测接触半径。

研究目的:

本文的主要研究目的是给出球体与涂层材料接触的理论解答,从而为相关应力分析提供理论方法,同时可进一步利用本文的方法和结果指导涂层材料的压痕实验。

研究方法:

本文为理论分析,主要采用镜像法和叠加法,同时利用有限元法对理论解进行对比验证。

结果:

弹性球压入表面涂层半空间的接触问题的理论解可通过构造无穷级数来实现。

结论:

理论解为显式级数表达式,且具有很快的收敛速度,而且应力和位移主要取决于首项,因此在实际应用时只取级数的前几项即可得到足够精确的结果。

关键词:基本解;镜像法;涂层半空间;球形压入;接触半径

  相似文献   

13.
上覆弹性土层横观各向同性饱和地基竖向振动分析   总被引:1,自引:0,他引:1  
针对上覆弹性土层横观各向同性饱和地基,采用半解析半数值的方法研究了其竖向振动问题.利用Hankel积分变换分别求解了横观各向同性弹性介质和饱和介质的动力控制方程,结合边界条件给出了谐和荷载作用下上覆弹性土层横观各向同性饱和地基表面位移积分形式解.采取数值Hankel逆变换结合数值算例,讨论了上覆弹性土层厚度、弹性土和饱和土各向异性对地基竖向振幅的影响.结果表明,地表竖向振幅随着上覆弹性土层及饱和土体弹性各向异性参数的增大而减少,而饱和土体渗透系数各向异性对地表竖向振幅的影响不大.  相似文献   

14.
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements...  相似文献   

15.
According to the two-dimensional(2-D) thermo-elasticity theory, the exact elasticity solution of the simply supported laminated beams subjected to thermo-loads was studied. An analytical method was presented to obtain the temperature, displacement and stress fields in the beam. Firstly, the general solutions of temperature, displacements and stresses for a single-layered simply supported beam were obtained by solving the 2-D heat conduction equation and the 2-D elasticity equations, respectively. Then, based on the continuity of temperature, heat flux, displacements and stresses on the interface of two adjacent layers, the formulae of temperature, displacements and stresses between the lowest layer and the top layer of the beam were derived out in a recurrent manner. Finally, the unknown coefficients in the solutions were determined by the use of the upper surface and lower surface conditions of the beam. The distributions of temperature, displacement and stress in the beam were obtained by substituting these coefficients back to the recurrence formulae and the solutions. The excellent convergence of the present method has been demonstrated and the results obtained by the present method agree well with those from the finite element method. The effects of surface temperatures, thickness, layer number and material properties of the plate on the temperature distribution were discussed in detail. Numerical results reveal that the displacements and stresses monotonically increase with the increase of surface temperatures. In particular, the horizontal stresses are discontinuous at the interface.  相似文献   

16.
本文使用Fourier积分变换,对非对称载荷作用下的Griffith裂纹问题进行了研究。利用裂纹两侧的位移和应力联结条件,将问题归结为一组带Cauchy核的奇异积分方程,通过Cauchy反演求得了问题的精确解,在此基础上.给出了其应力强度因子的表达式。该结果可作为基本解用于求解一般裂纹系问题。  相似文献   

17.
根据Biot动力理论,采用Fourier和Hankel变换方法得到了半空间饱和土受移动荷载及土体内受垂直简谐荷载作用下的变换域内基本解.再根据虚拟桩法,得出了移动载荷作用下桩基的第二类Fredholm积分方程.最后应用IFFT方法得到时间、空间域内单桩的动力响应.数值结果表明,移动荷载会引起桩身的负摩擦力;桩身最大轴力、孔压随移动荷载速度增加而增大;此外,在桩上端部会出现孔压集中现象.  相似文献   

18.
利用二维有限积分变换的方法推导出了四边固支矩形厚板位移和内力的精确解。弹性矩形厚板控制方程采用Mindlin三变量理论,在求解过程中不需要预先人为选取位移函数,而是直接对控制方程进行二维有限积分变换,将偏微分方程组化为简单的线性方程组进行求解,然后进行相应的积分逆变换得到实际问题的精确解。仅使用有限积分变换的数学方法,推导出了完全满足四边固支边界条件的矩形厚板问题的位移与内力的表达式,并对实例进行了数值计算。计算结果表明,运用有限积分变换的方法计算出的四边固支矩形厚板问题的位移和内力是精确的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号