首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitaxial anatase titanium dioxide (TiO2) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10− 7 Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO2 growth. X-ray diffraction revealed that the TiO2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates.  相似文献   

2.
Self-limiting deposition of titanium dioxide thin films was accomplished using pulsed plasma-enhanced chemical vapor deposition (PECVD) and plasma-enhanced atomic layer deposition (PEALD) at low temperatures (T < 200 °C) using TiCl4 and O2. TiCl4 is shown to be inert with molecular oxygen at process conditions, making it a suitable precursor for these processes. The deposition kinetics were examined as a function of TiCl4 exposure and substrate temperature. The quality of the anatase films produced by the two techniques was nominally identical. The key distinctions are found in precursor utilization and conformality. Pulsed PECVD requires 20 times less TiCl4, while PEALD must be used to uniformly coat complex topographies.  相似文献   

3.
We study the thermal properties of amorphous TiO2 thin films of various thicknesses t, grown by atomic layer deposition. The thermo-optic coefficient dn/dT and the temperature coefficient dρ/dT of film density ρ are determined from ellipsometric data in wavelength range 380 < λ < 1800 nm with the Cauchy model and the Lorentz-Lorenz relation. It is found that dn/dT exhibits negative values for films with t < 150 nm and positive values for thicker films, while no significant changes in the two coefficients take place if t < 200 nm. A qualitative physical explanation based on porosity of the thin films is suggested. Films with t = 60 nm are illustrated in detail at λ = 640 nm: the room-temperature values of the coefficients are found to be dn/dT = − 3.1 × 10− 5 °C− 1 and dρ/dT = − 4.8 × 10− 5g cm− 3° C− 1.  相似文献   

4.
Atomic layer deposition was applied to fabricate metal oxide films on planar substrates and also in deep trenches with appreciable step coverage. Atomic layer deposition of Ru electrodes was realized on planar substrates. Electrical and structural behaviour of HfO2-TiO2 and Al2O3-TiO2 nanolaminates and mixtures as well as Al2O3 films were evaluated. The lowest leakage current densities with the lowest equivalent oxide thickness were achieved in mixed Al2O3-TiO2 films annealed at 700 °C, compared to all other films in as-deposited state as well as annealed at 900 °C. The highest permittivities in this study were measured on HfO2-TiO2 nanolaminates.  相似文献   

5.
Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research is to probe the structural and functional relationships of the solid-solid interface created by the reactive DC magnetron sputtering of titanium dioxide. We show that sputter deposition provides excellent control of the phase and interface formation. We explored the effects of the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. We have successfully made pure and mixed phase TiO2 films. These films were characterized with AFM, SEM, TEM, and XRD to determine surface morphology, phase distribution and phase content. The performance as photocatalytic surfaces was measured and compared (normalized for surface area) to mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and sol-gel deposited TiO2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and sol-gel TiO2 as measured by the gas phase oxidation of the air pollutant acetaldehyde under UV illumination. These results demonstrate that reactive DC magnetron sputtering is a powerful tool for investigating the role of the solid-solid interface in influencing photocatalytic activity. In addition, our work illustrates the feasibility of reactive DC magnetron sputtering as a practical commercial technique for manufacturing highly active nanostructured TiO2 photocatalysts.  相似文献   

6.
Titanium oxides have anti-inflammatory activity and tunable electrochemical properties that make them attractive materials for biomedical applications. This work investigated the compatibility of nanometric coatings of low-temperature phases of TiO2 with neurons in 4-day and 10-day cultures, using different cell densities to quantify cell survival and neurite extension. TiO2 films were prepared by sol–gel and thermal treatment (250–450 °C) of hydrolyzed titanium tetra-isopropoxide on electrically conducting or insulating slides. The conducting substrates were not passivated by the nanometric oxide layer and could be used as electrodes. Characterization of the films showed nano-structured TiO2 containing exclusively Ti+4 valence in anatase and amorphous phases. When coated with polylysine, all films permitted good neuron attachment and survival for at least ten days in culture. However, they generally reduced neurite growth compared to cell culture borosilicate glass, with dendrites more affected than axons. The analyses of surface topography, hydrophilicity, charge and chemical composition revealed that TiO2 chemistry was the main factor responsible for neurite inhibition.  相似文献   

7.
Atomic layer deposition (ALD) of TiO2 using tetrakis(diethylamino)titanium precursor and H2O was studied on silicon and copper surfaces in order to examine differences in nucleation. Both surfaces were patterned on the same substrate to assure identical deposition conditions. Spectral ellipsometry, X-ray photoelectron spectroscopy and surface profilometry were used to probe nucleation phenomena, growth rates, and surface morphology on both surfaces. The TiO2 deposition on copper was found to exhibit a significant induction period of about 20-25 ALD cycles with no observable TiO2 during the first 10-15 cycles on the copper side; in contrast, no such inhibited growth was observed in the TiO2 deposition on silicon. This result opens up potential for selective ALD of TiO2 films on silicon-based substrates patterned with a metal without the use of a mask, a self-assembled monolayer or soft lithography which is impractical for some nanoscale semiconductor fabrication processes. After film nucleation, the TiO2 growth rate on both surfaces was found to be 0.10 nm/cycle.  相似文献   

8.
The consumption of the surface native oxides is studied during the atomic layer deposition of TiO2 films on GaAs (100) surfaces. Films are deposited at 200 °C from tetrakis dimethyl amido titanium and H2O. Transmission electron microscopy data show that the starting surface consists of ~2.6 nm of native oxide and X-ray photoelectron spectroscopy indicates a gradual reduction in the thickness of the oxide layer as the thickness of the TiO2 film increases. Approximately 0.1-0.2 nm of arsenic and gallium suboxide is detected at the interface after 250 process cycles. For depositions on etched GaAs surfaces no interfacial oxidation is observed.  相似文献   

9.
Liquid phase deposition method is applied to one-step production of a hybrid material composed by dopamine(DA) and TiO2 anatase. An optimized amount of the enediol derivative is added to a fluoride titania precursor aqueous solution in order to entrap this modifier within the growing TiO2, yielding a DA/TiO2 nanocomposite material. Uniform, well-adhered and brown-colored thin films are deposited on indium tin oxide covered glass substrate. The DA/TiO2 hybrid material has been characterized by infrared spectroscopy, electronic microscopy, X-ray diffraction and UV-vis spectroscopy. The formation of the hybrid material seems to be reasonably explained by linkage of different TiO2 nanocrystallites taking advantage of both enediol and amine groups of DA.  相似文献   

10.
Wenli Yang 《Thin solid films》2006,515(4):1708-1713
Amorphous TiO2 thin films were formed by plasma-enhanced chemical vapor deposition (PECVD) from mixtures of titanium IV isopropoxide (Ti(O-i-C3H7)4) and oxygen. The deposition rate was found to be weakly activated, with an apparent activation energy of 4.5 kJ/mol. The deposition rate increased with equivalence ratio and decreased with plasma power. This dependence on atomic oxygen density was consistent with behavior observed in other metal oxide PECVD systems. Metal-insulator-silicon devices were fabricated, and characterized using capacitance-voltage measurements. The apparent dielectric constant of the TiO2 thin films increased from 15 to 82 with film thickness. The observed variations were consistent with the formation of an interfacial SiO2 layer. Assuming that a TiO2/SiO2 bilayer behaves as two capacitors in series, an intrinsic TiO2 dielectric constant of 82 ± 10 and an interfacial SiO2 layer thickness of 3 ± 1 nm were extracted from electrical measurements.  相似文献   

11.
X.Y. Wang  Z. Liu  D. Klein 《Thin solid films》2005,473(2):177-184
It is fundamentally important to determine the deoxidisation and phase compositions of plasma sprayed TiO2 coatings containing anatase. In the present study, plasma sprayed porous TiO2 coatings containing anatase were prepared using anatase powder and both Ar-He-H2 and Ar-He-N2 plasma gases. The deoxidisation of TiO2 and phase compositions of the starting powder and the prepared coatings were examined using X-ray Rietveld method by refining their crystalline parameters and scale factors. The refined oxygen occupancies showed that there were about 0.08 and 0.1 formula units of oxygen deficiencies for the rutile and anatase phases of the coatings, respectively. Such degrees of deoxidisation and the other crystalline parameters appeared independent of the plasma spraying process parameters. With considerations of the presence of organic adhesive in the starting powder and the formation of titanium ethoxide in the coatings, the degrees of deoxidisation estimated by the X-ray Rietveld method were slightly higher than those quantified by the thermogravimetry curves. The phases of the coatings determined from the refined scale factors were mainly composed of rutile with 10.0% to 22.5% anatase by weight, and the latter content increased with decreasing the intensity of the plasma jet.  相似文献   

12.
Nanocomposite of K0.3Ti4O7.3(OH)1.7 fiber and anatase TiO2 nanoparticle was prepared by hydrothermal treatment of the K0.3Ti4O7.3(OH)1.7 which was synthesized by calcination of K2CO3 and TiO2 at 1250 °C followed by refluxing in nitric acid. Effects of hydrothermal treatment conditions such as temperature and time on morphology, phase composition and crystal structure of the nanocomposites were extensively studied. Photocatalytic activities of the catalysts prepared at various hydrothermal conditions were evaluated by means of methylene blue decomposition under blacklight irradiation.  相似文献   

13.
Changes in the functional properties of 50 and 100 nm thick anatase-type and of 100 and 150 nm thick rutile-type atomic-layer-deposited TiO2 coatings with increasing tensile deformation of AISI 304 stainless steel substrate up to 40% strain were studied. All as-received coatings exhibited good photoelectrochemical and photocatalytic activity as well as photohydrophilicity, but the photocatalytic activity of the rutile-type coatings was only one third of that of the anatase-type coatings. The deformation induced changes in the functional properties depended strongly on the type and thickness of the coating. For the 50 nm anatase-type coating, all the monitored functional properties were severely reduced when the applied strain was 1.4% and higher. Rest of the coatings showed also considerable, but more gradual, decrease of the photoelectrochemical and photocatalytic activity with increasing strain. Least affected was the photohydrophilicity which remained approximately constant until 30% applied strain for the 100 nm coatings, and showed some variation for the 150 nm coating. The possible reasons for the observed behavior are discussed.  相似文献   

14.
Thin films of TiO2 doped with vanadium and palladium, prepared by the magnetron sputtering method, were studied by means of X-ray diffraction (XRD), Scanning Electron Microscopy with Energy Disperse Spectrometer (SEM-EDS) and Atomic Force Microscopy (AFM). Investigations have brought important information about microstructure due to dopant incorporation in the TiO2 host lattice. Directly after deposition thin films were XRD-amorphous and SEM investigations did not reveal details on the microstructure. Analysis of the topography of prepared thin films required application of Atomic Force Microscope. The AFM images show that as-deposited sample was dense with grain sizes varied in the range of 5.5 nm-10 nm, that indicated high quality nanocrystalline behavior. Additional annealing results in the formation of three phases in the thin film, e.g. (Ti,V)O2 — solid solution, PdO and metallic inclusions of Pd. SEM-EDS system allowed analysis of the elemental composition, especially the V one, which lines have not been evidenced in the XRD diffraction pattern. EDS maps show homogenous distribution of elements Ti, O, V, Pd in prepared thin films.  相似文献   

15.
The objective of this work was to investigate the improvement in performance of dye sensitized solar cells (DSSCs) by depositing ultra thin metal oxides (hafnium oxide (HfO2) and aluminum oxide (Al2O3)) on mesoporous TiO2 photoelectrode using atomic layer deposition (ALD) method. Different thicknesses of HfO2 and Al2O3 layers (5, 10 and 20 ALD cycles) were deposited on the mesoporous TiO2 surface prior to dye loading process used for fabrication of DSSCs. It was observed that the ALD deposition of ultrathin oxides significantly improved the performance of DSSCs and that the improvement in the DSSC performance depends on the thickness of the deposited HfO2 and Al2O3 films. Compared to a reference DSSC the incorporation of a HfO2 layer resulted in 69% improvement (from 4.2 to 7.1%) in the efficiency of the cell and incorporation of Al2O3 (20 cycles) resulted in 19% improvement (from 4.2 to 5.0%) in the efficiency of the cell. These results suggest that ultrathin metal oxide layers affect the density and the distribution of interface states at the TiO2/organic dye and TiO2/liquid electrolyte interfaces and hence can be utilized to treat these interfaces in DSSCs.  相似文献   

16.
Thin films of indium oxide have been deposited using the atomic layer deposition (ALD) technique using In(acac)3 (acac = acetylacetonate, pentane-2,4-dione) and either H2O or O3 as precursors. Successful growth using In(acac)3 is contradictory to what has been reported previously in the literature [J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Chem. Mater. 18 (2006) 3571.]. Investigation of the dependence of temperature on the deposition shows windows where the growth rates are relatively unaffected by temperature in the ranges 165–200 °C for In(acac)3 and H2O, 165–225 °C for In(acac)3 and O3. The growth rates obtained are of the order 20 pm/cycle for In(acac)3 and H2O, 12 pm/cycle for In(acac)3.  相似文献   

17.
The electrolytic deposition of TiO2 thin films on platinum for lithium batteries is carried out in TiCl4 alcoholic solution and the films are subsequently annealed. The as-prepared films are amorphous TiO(OH)2·H2O, transformed into anatase TiO2 at 350 °C, and then gradually into rutile TiO2 at 500 °C. Cyclic voltammograms show oxidation and reduction peaks at 2.20 and 1.61 V, respectively, corresponding to charge and discharge plateaus at 1.98 and 1.75 V vs. Li+/Li. The specific capacity decreases with increasing current density for film of 128-nm thickness in the initial discharge. It is observed that the diffusion flux of Li+ insertion/extraction into/from TiO2 controls the reaction rate at higher current densities. Consequently, at low film thickness, high discharge capacity (per weight) is found for the initial cycle at a current density of 10 μA cm− 2. However, the capacity of prepared films in various thicknesses approach 103 ± 5 mAh g− 1 after 50 cycles, since the formation of cracks for thicker films offers shorter diffusion paths for Li+. In addition, TiO2 films show electrochromic properties during lithiation and delithiation.  相似文献   

18.
TiO2/SnO2 thin films with different tin atomic percentages were successfully prepared on glass substrates by the spray pyrolysis method from an alcoholic solution of TiO[C5H7O2]2 with different concentrations of SnCl4. The TiO2/SnO2 thin films prepared at 450 °C presented the anatase phase in polycrystalline configuration from %Sn = 0 in the starting solution up to %Sn = 20, at higher tin content the films present an amorphous configuration. The resulting thin films have a homogeneous surface structure with some porosity. The photocatalytical properties of the films were evaluated with the degradation of methylene blue. The products of the degradation reaction were identified by 1H nuclear magnetic resonance and the film properties were studied by atomic force microscopy, scanning electron microscopy, UV–Vis spectroscopy, and X-ray diffraction.  相似文献   

19.
We examined the atomic layer deposition (ALD) of Pd films using sequential exposures of Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin and discovered that formalin enables the efficient nucleation of Pd ALD on Al2O3. In situ quartz crystal microbalance measurements revealed that the Pd nucleation is hampered by the relatively slow reaction of the adsorbed Pd(hfac)2 species, but is accelerated using larger initial Pd(hfac)2 and formalin exposures. Pd nucleation proceeds via coalescence of islands and leaves hfac contamination at the Al2O3 interface. Pd films were deposited on the thermal oxide of silicon, glass and mesoporous anodic alumina following the ALD of a thin Al2O3 seed layer and analyzed using a variety of techniques. We measured a Pd ALD growth rate of 0.2 Å/cycle following a nucleation period of slower growth. The deposited films are cubic Pd with a roughness of 4.2 nm and a resistivity of 11 μΩ cm at 42 nm thickness. Using this method, Pd deposits conformally on the inside of mesoporous anodic alumina membranes with aspect ratio ∼1500 yielding promising hydrogen sensors.  相似文献   

20.
Based on the concept that the electron-hole separation effect caused by a different band-gap structure would improve its hydrophilicity, anatase-TiO2/Cr-doped TiO2 thin films were synthesized by DC magnetron sputtering. The optical band gaps of TiO2 thin films decreased from 3.23 to 2.95 eV with increasing Cr-doping content. Multilayer TiO2 thin films with different band gaps exhibited a superhydrophilicity under UV illumination. In particular, in anatase TiO2 (3.23 eV)/4.8% Cr-doped TiO2 (2.95 eV), the hydrophilicity, which indicated a contact angle of less than 20°, lasted for 48 h in the dark after UV illumination was discontinued. This outstanding result has rarely been reported for TiO2 thin films, which confirmed that the prominent superhydrophilicity of anatase TiO2/Cr-doped TiO2/glass could be attributed to the retardation of electron-hole recombination caused by the band-gap difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号