首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu  Di  Zhao  Zhihui  Lu  Wei  Rogée  Lukas  Zeng  Longhui  Lin  Pei  Shi  Zhifeng  Tian  Yongtao  Li  Xinjian  Tsang  Yuen Hong 《Nano Research》2021,14(6):1973-1979

There is an emerging need for high-sensitivity solar-blind deep ultraviolet (DUV) photodetectors with an ultra-fast response speed. Although nanoscale devices based on Ga2O3 nanostructures have been developed, their practical applications are greatly limited by their slow response speed as well as low specific detectivity. Here, the successful fabrication of two-/three-dimensional (2D/3D) graphene (Gr)/PtSe2/β-Ga2O3 Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated. Benefitting from the high-quality 2D/3D Schottky junction, the vertically stacked structure, and the superior-quality transparent graphene electrode for effective carrier collection, the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W, a large on/off current ratio of ~ 105, along with an ultra-high ultraviolet (UV)/visible rejection ratio of 1.8 × 104. More importantly, it has an ultra-fast response time of 12 µs and a remarkable specific detectivity of ~ 1013 Jones. Finally, an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga2O3 Schottky junction photodetector, demonstrating its great potential application in DUV imaging systems.

  相似文献   

2.
We employ thermoreflectance thermal imaging to directly measure the steady-state two-dimensional(2D)temperature field generated by nanostructured heat sources deposited on silicon substrate with different geometrical configurations and characteristic sizes down to 400nm.The analysis of the results using Fourier's law not only breaks down as size scales down,but it alsofails to capture the impact of the geometry of the heat source.The substrate effective Fourier thermal conductivities fitted to wire-shaped and circular-shaped structures with identical characteristic lengths are found to display up to 40%mismatch.Remarkably,a hydrcxjynamic heat transport model reproduces the observed temperature fields for all device sizes and shapes using just intrinsic Si parameters,i.e.,a geometry and size-independent thermal conductivity and nonlocal length scale.The hydrodynamic model provides insight into the observed thermal response and of the contradictory Fourier predictions.We discuss the substantial Silicon hydrodynamic behavior at room temperature and contrast it to InGaAs,which shows less hydrodynamic effects due to dominant phonon-impurity scattering.  相似文献   

3.
Recently developed lead-free double perovskite nanocrystals(NCs)have been proposed for the possible application in solutionprocessed optoelectronic devices.However,the optoelectronic applications of double perovskite NCs have been hampered due to the structural and chemical instability in the presence of polar molecules.Here,we report a facile strategy for the synthesis and purification of Cs2AgBiBr6double perovskite NCs that remained stable even after washing with polar solvent.This is realized with our efficient colloidal route to synthesize Cs2AgBiBr6NCs that involve stable and strongly coordinated precursor such as silvertrioctyl phosphine complex together with bismuth neodecanoate,which leads to a significantly improved chemical and colloidal stability.Using layer-by-layer solid-state ligand exchange technique,a compact and crack-free thin film of Cs2AgBiBr6NCs were fabricated.Finally,perovskite solar cells consisting of Cs2AgBiBr6as an absorber layer were fabricated and tested.  相似文献   

4.
Sheng  Jian  Zhu  Sheng  Jia  Guodong  Liu  Xu  Li  Yan 《Nano Research》2021,14(12):4541-4547

Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm−2 for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm−2 and an excellent cycling stability of over 1,000 h at 10 mA·cm−2, which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.

  相似文献   

5.
Ma  Lianbo  Lv  Yaohui  Wu  Junxiong  Xia  Chuan  Kang  Qi  Zhang  Yizhou  Liang  Hanfeng  Jin  Zhong 《Nano Research》2021,14(12):4442-4470

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

  相似文献   

6.
Li  Meng  Zhao  Andong  Dong  Kai  Li  Wen  Ren  Jinsong  Qu  Xiaogang 《Nano Research》2015,8(10):3216-3227

Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer’s disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.

  相似文献   

7.
Zhang  Zhi-Cheng  Li  Yi  Wang  Jing-Jing  Qi  De-Han  Yao  Bin-Wei  Yu  Mei-Xi  Chen  Xu-Dong  Lu  Tong-Bu 《Nano Research》2021,14(12):4591-4600

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including “NAND” and “NOR” are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory-processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

  相似文献   

8.
Wu  Xiangshui  Tao  Qiqi  Li  Da  Wang  Qilang  Zhang  Xiaoyan  Jin  Huile  Li  Jun  Wang  Shun  Xu  Xiangfan 《Nano Research》2021,14(12):4725-4731

Tellurene, probably one of the most promising two-dimensional (2D) system in the thermoelectric materials, displays ultra-low thermal conductivity. However, a linear thickness-dependent thermal conductivity of unique tellurium nanoribbons in this study reveals that unprecedently low thermal conductivity can be achieved via well-defined nanostructures of low-dimensional tellurium instead of pursuing dimension-reduced 2D tellurene. For thinnest tellurium nanoribbon with thickness of 144 nm, the thermal conductivity is only ∼1.88 ± 0.22 W·m−1·K−1 at room temperature. It’s a dramatic decrease (45%), compared with the well-annealed high-purity bulk tellurium. To be more specific, an expected thermal conductivity of tellurium nanoribbons is even lower than that of 2D tellurene, as a result of strong phonon-surface scattering. We have faith in low-dimensional tellurium in which the thermoelectric performance could realize further breakthrough.

  相似文献   

9.
Pei  Yongfeng  Chen  Rui  Xu  Hang  He  Dong  Jiang  Changzhong  Li  Wenqing  Xiao  Xiangheng 《Nano Research》2021,14(6):1819-1839

In recent years, two-dimensional (2D) layered metal dichalcogenides (MDCs) have received enormous attention on account of their excellent optoelectronic properties. Especially, various MDCs can be constructed into vertical/lateral heterostructures with many novel optical and electrical properties, exhibiting great potential for the application in photodetectors. Therefore, the batch production of 2D MDCs and their heterostructures is crucial for the practical application. Recently, the vapour phase methods have been proved to be dependable for growing large-scale MDCs and related heterostructures with high quality. In this paper, we summarize the latest progress about the synthesis of 2D MDCs and their heterostructures by vapour phase methods. Particular focus is paid to the control of influence factors during the vapour phase growth process. Furthermore, the application of MDCs and their heterostructures in photodetectors with outstanding performance is also outlined. Finally, the challenges and prospects for the future application are presented.

  相似文献   

10.
Wang  Xuemin  Liu  Ming  Zhang  Hang  Yan  Sihao  Zhang  Cui  Liu  Shuangxi 《Nano Research》2021,14(12):4569-4576

Despite the extensive application of porous nanostructures as oxygen electrocatalysts, it is challenging to synthesize single-metal state materials with porous structures, especially the ultrasmall ones due to the uniform diffusion of the same metal. Herein, we pioneer demonstrate a new size effect-based controllable synthesis strategy for the homogeneous Co nanokarstcaves assisted by Co-CN hybrids (CCHs). The preferential migration of cobalt atoms on the surface of small size zeolitic imidazolate framework (ZIF) with high surface energy during pyrolysis is the key factor for the formation of nanokarstcave structure. Furthermore, graphene can act as a diffusion barrier to prevent the agglomeration of nanoparticles in the synthesis process, which also plays an important role in the formation of porous nanostructures. In alkali media, CCHs achieve overpotential of 287 mV (@10 mA·cm−2) for oxygen evolution reaction (OER) and a half wave potential of 0.86 V (vs. RHE) for oxygen reduction reaction (ORR).

  相似文献   

11.
Optical manipulation of micro/nanoscale objects is of importance in life sciences,colloidal science,and nanotechnology.Optothermal tweezers exhibit superior manipulation capability at low optical intensity.However,our implicit understanding of the working mechanism has limited the further applications and innovations of optothermal tweezers.Herein,we present an atomistic view of opto-thermo-electro-mechanic coupling in optothermal tweezers,which enables us to rationally design the tweezers for optimum performance in targeted applications.Specifically,we have revealed that the non-uniform temperature distribution induces water polarization and charge separation,which creates the thermoelectric field dominating the optothermal trapping.We further design experiments to systematically verify our atomistic simulations.Guided by our new model,we develop new types of optothermal tweezers of high performance using low-concentrated electrolytes.Moreover,we demonstrate the use of new tweezers in opto-thermophoretic separation of colloidal particles of the same size based on the difference in their surface charge,which has been challenging for conventional optical tweezers.With the atomistic understanding that enables the performance optimization and function expansion,optothermal tweezers will further their impacts.  相似文献   

12.
Jiang  Haoyu  Qi  Jizhen  Wu  Dongchang  Lu  Wei  Qian  Jiahui  Qu  Haifeng  Zhang  Yixiao  Liu  Pei  Liu  Xi  Chen  Liwei 《Nano Research》2021,14(12):4802-4807

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

  相似文献   

13.
Sun  Danping  Tan  Zhi  Tian  Xuzheng  Ke  Fei  Wu  Yale  Zhang  Jin 《Nano Research》2021,14(12):4370-4385

The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance. Charge transfer kinetics and polarization theory, considered as basic principles for charge regulation in the LIBs, indicate that the rapid transfer of both electrons and ions is vital to the electrochemical reaction process. Graphene, a promising candidate for charge regulation in high-performance LIBs, has received extensive investigations due to its excellent carrier mobility, large specific surface area and structure tunability, etc. Recent progresses on the structural design and interfacial modification of graphene to regulate the charge transport in LIBs have been summarized. Besides, the structure-performance relationships between the structure of the graphene and its dedicated applications for LIBs have also been clarified in detail. Taking graphene as a typical example to explore the mechanism of charge regulation will outline ways to further understand and improve carbon-based nanomaterials towards the next generation of electrochemical energy storage devices.

  相似文献   

14.
Zhou  Jian  Dou  Yibo  He  Tao  Zhou  Awu  Kong  Xiang-Jing  Wu  Xue-Qian  Liu  Tongxin  Li  Jian-Rong 《Nano Research》2021,14(12):4548-4555

Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted as NiCo2X4/CP (X = O, S, and Se) are prepared to demonstrate how the anion components affect the electronic structures and thereby disclose the correlation between their intermediates interaction and catalytic activities. The experimental characterization and theoretical calculation demonstrate that Se and S substitution can promote the ratio of Co3+/Co2+ and thereby modulate the electronic structure accompanied with the upshift of d band centers, which not only enhance the inner conductivity but also regulate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H and hydroperoxy intermediates towards respective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, a full alkaline electrolyzer using NiCo2Se4/CP and NiCo2S4/CP as cathode and anode delivers a low voltage of 1.51 V at 10 mA·cm−2, which is comparable even superior to most transition metal-based electrolyzers.

  相似文献   

15.
Hydrocarbons separation in petrochemical industries is a key,energy-consuming stage in the manufacture of high-quality added-value products—hence the need for more efficient materials and environmentally friendly methodologies to improve this process.In this context,we have studied the effect of metal-organic frameworks(MOFs)pore functionalization in hexane isomers separation,isolating the robust isoreticular zinc(ll)bipyrazolates Zn(BPZ),showing no pore decoration,Zn(Me2BPZ),the pores of which are decorated with apolar methyl groups,and Zn(BPZ(NH2)2),the spacers of which possess polar Lewis-basic functions(H2BPZ=1H,1'H-4,4'-bipyrazole;H2Me2BPZ=3,3'-dimethyl-1H,1'H-4,4'-bipyrazole;H2BPZ(NH2)2=3,5-diamino-1H,1'H-4,4'-bipyrazole;DMF=dimethylformamide).After characterizing Zn(BPZ(NH2)2)as per its crystal structure and thermal behaviour,and all the three MOFs as per their textural properties,we investigated,from the experimental and computational points of view,the impact of the square one-dimensional channels decoration on the separation of the hexane isomers,demonstrating the relevance of pore constrictions in the resolution of the title alkanes mixture.  相似文献   

16.
Silicon is a low price and high capacity ancxje material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve stability.However,the limited rate performance of Si anodes can't meet people's growing demand for high power density.Herein,the phosphorus-doped yolk-shell Si@C materials(P-doped Si@C)were prepared through carbon coating on P-doped Si/SiOxmatrix to obtain high power and stable devices.Therefore,the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4%to 99.6%after only 6 cycles,high capacity retention of-95%over 800 cycles at 4 A·g-1,and great rate capability(510 mAh·g-1at 35 A·g-1).As a result,P-doped Si@C anodes paired with commercial activated carbon and LiFePO4cathode to assemble lithium-ion capacitor(high power density of?61,080 W·kg-1at 20 A·g-1)and lithium-ion full cell(good rate performance with 68.3 mAh·g-1at 5 C),respectively.This work can provide an effective way tofurther improve power density and stability for energy storage devices.  相似文献   

17.
Li  Deping  Sun  Qing  Zhang  Yamin  Dai  Xinyue  Ji  Fengjun  Li  Kaikai  Yuan  Qunhui  Liu  Xingjun  Ci  Lijie 《Nano Research》2021,14(12):4502-4511

Carbon-based material has been regarded as one of the most promising electrode materials for potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile “in situ self-template bubbling method for synthesizing interlayer-tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the high reversible capacity (360.6 mAh·g−1@0.05 A·g−1), excellent rate capability (158.6 mAh·g−1@10.0 A·g−1) and ultralong high-rate cycling stability (82.8% capacity retention after 2,000 cycles at 5.0 A·g−1). Theoretical simulation reveals the correlations between interlayer distance and K-ion diffusion kinetics. Experimentally, deliberately designed consecutive cyclic voltammetry (CV) measurements, ex situ Raman tests, galvanostatic intermittent titration technique (GITT) method decipher the origin of the excellent rate performance by disentangling the synergistic effect of interlayer and pore-structure engineering. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work may deepen the fundamental understandings of carbon-based PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors, and dual-ion batteries.

  相似文献   

18.
Bai  Bingbing  Gu  Chaoyu  Lu  Xiaohui  Ge  Xingyu  Yang  Junling  Wang  Chenfei  Gu  Yongchun  Deng  Aidong  Guo  Yuehua  Feng  Xingmei  Gu  Zhifeng 《Nano Research》2021,14(12):4577-4583

Periodontitis is recognized as the major cause of tooth loss in adults, posing an adverse impact on systemic health. In periodontitis, excessive production of reactive oxygen species (ROS) at the inflamed site culminates in periodontal destruction. In this study, a novel ROS-responsive drug delivery system based on polydopamine (PDA) functionalized mesoporous silica nanoparticles was developed for delivering minocycline hydrochloride (MH) to treat periodontitis. The outer PDA layer and the inner MH of the nanoparticles acted as ROS scavengers and anti-inflammatory agents, respectively. Under the synergistic action of PDA and MH, macrophages were polarized from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. The in vitro experiments provided convincing evidence that PDA could scavenge ROS effectively, and the expression of pro-inflammatory cytokines was attenuated and the secretion of anti-inflammatory cytokines was enhanced through M1 to M2 polarization of macrophages with the cooperation of MH. In addition, the results obtained from the periodontitis rat models demonstrated that the synergetic effect of PDA and MH prevented alveolar bone loss without causing any adverse effect. Taken together, the results from the present investigation provide a new strategy to remodel the inflammatory microenvironment by inducing the polarization of macrophages from M1 toward M2 state for the treatment of periodontitis.

  相似文献   

19.
C5 olefin separation is of great importance and challenge in industry with the increasing demand for synthetic rubber.However,the related study is limited due to the complex compositions and the similar boiling points.Here,we for the first time employ two anionpillared hybrid porous materials(ZU-62 and TIFSIX-2-Cu-i)towards the challenging separation of C5 olefin mixtures(trans-2-pentene,1-pentene and isoprene).These two adsorbents not only exhibit the unprecedented separation performance,but also show excellent recycle performance.Owing to the favorable electrostatic environment within a suitable confined space,TIFSIX-2-Cu-i is able to distinguish the three C5 olefins(frans-2-pentene,1-pentene and isoprene)with a high uptake of trans-2-pentene(3.1mmgol·g-1)ZU-62(also termed as NbOFFIVE-2-Cu-i)with contracted aperture size shows exclusion effect to the relatively large molecule of isoprene at low pressure range(0-6 kPa),contributing to the excellent separation selectivity of 1-pentene/isoprene(300).The excellent separation performance of ZU-62 and TIFSIX-2-Cu-i is verified by the breakthrough experiment.And interestingly,the regeneration tests show that C5 olefins can be easily desorbed from ZU-62,TIFSIX-2-Cu-i under 298 K.Moreover,the detailed adsorption behavior is further revealed by simulation studies.  相似文献   

20.
Synthetic materials with tunable mechanical properties have great potential in soft robotics and biomedical engineering.However,current materials are limited to the mechanical duality altering their mechanical properties only between soft and hard states and lack of consecutively programmable mechanics.Herein,the magnetic-programmable organohydrogels with heterogeneous dynamic architecture are designed by encasing oleophilic ferrofluid droplets into hydrogel matrix.As magnetic field increases,the mechanical properties of organohydrogels can be consecutively modulated owing to the gradual formation of chain-like assembly structures of nanoparticles.The storage modulus G'increases by 2.5 times when magnetic field goes up to 0.35 T.Small-Angle X-ray Scattering(SAXS)confirms the reconfigurable orientation of nanoparticles and the organohydrogels show reversible modulus switching.Besides,the materials also exhibit high stretchability,magnetic actuation behavior and effective self-healing capability.Furthermore,the organohydrogels are applied into the design of effectors with mechanical adaptivity.When subjected to serious external perturbations,the effector can maintain mechanical homeostasis by regulating modulus of organohydrogel under applied magnetic field.Such materials are applicable to homeostatic systems with mechanically adaptive behaviors and programmed responses to external force stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号