共查询到19条相似文献,搜索用时 62 毫秒
1.
为实现在只有少量标记数据情况下的高质量的图像分类,本文提出了一种基于深度卷积神经网络的图上半监督极化SAR图像分类算法.该算法将极化SAR图像建模为无向图,并基于该无向图,定义了包含半监督项,卷积神经网络项和类标光滑项的能量函数.算法所采用的卷积神经网络提取抽象的数据驱动的极化特征.半监督项约束了有标记像素的类标在分类过程中保持不变.类标光滑项约束了像素间类标的光滑性.基于对PauliRGB图像进行超像素分割而产生的初始化类标图,交替迭代优化所定义的能量函数直至其收敛.在两幅真实极化SAR图像上的实验结果表明,该算法达到了优异的分类效果,其性能优于当前已有算法. 相似文献
2.
3.
4.
X波段的高分辨率极化干涉合成孔径雷达(synthetic aperture radar,SAR)图像包含较强的斑点噪声,不利于地物分类等应用.针对这一问题,先使用Nonlocal滤波进行预处理,然后提取图像的极化特征和干涉特征,再使用支持向量机(support vector machine,SVM)和AdaBoost分类器对极化和干涉特征矢量进行分类.利用N-SAR系统于渭南市采集的极化干涉SAR数据进行验证,该数据共包含10类地物,并有足够的ground truth用来进行分类器的训练和测试.实验结果表明,AdaBoost分类器能对多类地物取得较好的分类效果,且干涉信息的加入能带来一定改善. 相似文献
5.
PolSAR (Polarimetric Synthetic Aperture Radar)图像分类的传统方法在前期需要对数据进行特征提取,涉及较多的人为参与,且分类精度有待进一步提高。此外,在采用监督分类方法时,某些地物存在小样本问题,针对这些问题并结合PolSAR图像精细分类的需求,提出基于3D卷积神经网络的PolSAR图像地物精细分类方法,将传统卷积神经网络扩展为三维并将其应用于PolSAR图像分类中,利用PolSAR数据多通道特性,充分挖掘数据中的信息,提高分类性能,并采用虚拟样本扩充的方法改善某些地物的小样本情况,获得更好的分类结果。实验结果表明:3D卷积神经网络较2D卷积神经网络在PolSAR图像地物精细分类中有较好的性能,且虚拟样本扩充方法能够有效改善小样本分类问题。 相似文献
6.
SAR图像的极化干涉非监督Wishart分类方法和实验研究 总被引:2,自引:2,他引:2
该文在合成孔径雷达图像的极化非监督Wishart分类的基础上,给出了一种利用极化干涉信息对合成孔径雷达图像进行非监督分类的方法。该方法主要利用一(66)的极化干涉相关矩阵,从而可以同时考虑单幅图像的全极化信息以及两幅像对之间的互相关信息。该文详细阐述了该方法的具体实现,并利用NASA/JPL的SIR-C/X-SAR系统在中国天山地区的L波段实测数据进行了实验研究。给出了利用该方法对实验数据进行分类的结果,并与极化非监督Wishart分类的结果进行了比较。结果表明,该方法能够很好地分辨不同类型的地物,保持地物的细节,并且比极化非监督Wishart分类结果有很大改善。 相似文献
7.
8.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。 相似文献
9.
基于深度学习的方法在极化合成孔径雷达(Synthetic Aperture Rader,SAR)图像分类中取得了不错的分类结果,尤其是全卷积网络(Fully Convolution Network,FCN),得益于其端到端、点到点的分类架构,在极化SAR图像分类中有很大的应用前景。之前的基于FCN的极化SAR图像分类方法中,没有使用超像素去修正分类结果,影响了其分类结果的进一步提升。提出了基于超像素和FCN的极化SAR图像分类方法,得到了很好的分类结果。 相似文献
10.
该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。 相似文献
11.
随着合成孔径雷达技术的成熟,传统方法已经难以满足海量SAR数据的分类精度和速度需求。为解决上述问题,采用卷积神经网络对海量SAR数据进行分类。针对SAR图像数据的特点,对卷积神经网络结构参数进行调整,提高网络训练速度,克服权重更新中的梯度消失,改善网络训练过程中收敛慢的问题,提升目标分类准确率。同时提出了一种ZCA白化与主成分分析相结合的方法对SAR图像进行预处理,进一步提升了网络的训练速度以及目标分类的准确率。实验采用的是美国MSTAR数据库,通过上述优化方法得到了较好的分类效果。 相似文献
12.
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标分辨率差异大,多尺度SAR图像目标分类准确率不高的问题,提出了一种基于迁移学习和分块卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标分类算法。首先通过大量与目标域相近的源域数据对分块CNN的参数进行训练,得到不同尺度下的CNN特征提取网络;其次将CNN的卷积和池化层迁移到新的网络结构中,实现目标特征的提取;最后用超限学习机(Extreme Learning Machine, ELM)网络对提取的特征进行分类。实验数据采用美国MSTAR数据库以及多尺度SAR图像舰船目标数据集,实验结果表明,该方法对多尺度SAR图像的分类效果优于传统CNN。 相似文献
13.
针对传统模糊逻辑降水粒子识别算法存在过度依赖专家经验来设置参数的缺陷,提出一种基于卷积神经网络(Convolutional Neural Network, CNN)和支持向量机(Support Vector Machine, SVM)联合结构的降水粒子分类方法。本文首先搭建了适用于双偏振雷达数据矩阵传播结构的4种卷积神经网络模型,通过对KOHX雷达各极化参数进行分块和堆叠操作,制作模型所需数据集并训练模型。然后根据各CNN模型对目标块的分类特点,结合SVM分类器,搭建能够识别5类目标粒子的联合结构。最后,对KOHX雷达0.5°仰角扫描数据进行测试,得到该联合结构模型的分类准确率达94.92%。并且对于不同仰角、不同雷达的扫描数据均能进行有效分类,表现出较好的鲁棒性。 相似文献
14.
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在ImageNet-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法. 相似文献
15.
在极化合成孔径雷达(PolSAR)地物分类研究中,基于实数CNN的分类算法无法充分利用PolSAR图像丰富的通道相位信息,并且在逐像素预测中存在大量冗余计算,导致分类效率较低。针对以上问题,该文采用一种复数域下的像素映射深度模型,实现低采样率下精确且高效的PolSAR地物分类。为充分使用PolSAR数据的通道相位信息,该文基于一种编组-交叉卷积网络(GC-CNN)将分类模型推广到复数域,并利用网络提取的复数特征及其对应的相位和幅度来实现更精确的分类;为加快分类速度,该文还采用了一种精调的膨胀编组-交叉卷积网络(FDGC-CNN)来实现像素到像素的直接映射,并进一步提升了分类精度。在基于AIRSAR平台的16类地物数据和E-SAR平台的4类地物数据的实验中,该文采用的FDGC-CNN模型相较于SVM分类器和实数CNN模型,能够更准确和更高效地实现多类别地物分类,全局分类精度分别为96.94%和90.07%、总耗时4.22 s和4.02 s。 相似文献
16.
This paper studies semantic segmentation primarily under image-level weak-supervision. Most state-of-the-art technologies have recently used deep classifica-tio... 相似文献
17.
18.
为了提高高光谱图像的分类精度,提出了一种基于多尺度卷积神经网络的高光谱图像分类算法.首先,利用等距特征映射算法处理高光谱数据,以挖掘数据的非线性特性,保持数据点的内在几何性质;然后,构建以标记像元为中心的训练图像块,训练多尺度卷积神经网络;最后,利用softmax分类器预测测试像元的标签.提出的方法在Indian Pines、University of Pavia和Salinas scene高光谱遥感数据集上进行分类实验,并与CNN、R-PCA CNN、CNN-PPF、CD-CNN等算法进行性能比较.实验结果表明,在3个数据集上提出的方法的总体识别精度分别达到98.51%、98.64%和99.39%,与CNN算法相比分别提高了约8.35%、6.37%和7.81%.本文提出的方法无论是在分类精度还是Kappa系数上都优于另外4种方法,是一种较好的高光谱遥感数据分类方法. 相似文献
19.
计算机自动分类心电信号能够减轻医生工作压力并大幅提高诊断速度和准确率。文中针对传统算法中特征提取过程复杂及抗干扰能力弱的问题,提出了一种结合滤波重构和卷积神经网络的心电信号分类算法。该算法首先通过传统信号滤波和心拍序列重构去除原始心电信号中的噪声干扰,然后构建卷积神经网络来自动学习心电信号特征并完成分类。在PhysioNet/CinC Challenge 2017数据集上的分类实验结果表明,该方法的平均F1(查准率、召回率的调和平均)达到了0.8471,优于人工特征提取和常规卷积网络方法,且具有很强的抗干扰能力。 相似文献