首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Geosynthetic clay liners (GCLs) are widely used in landfill and heap-leach facility cover system for mitigating rainfall infiltration and gas migration into atmosphere. Laboratory tests were conducted to investigate methane diffusion and advection through GCLs. Gas permeability coefficient of GCL for the case with moisture content = 47.5% is one and two orders of magnitude greater than the cases with moisture content = 68.5% and 80.9%, respectively, when 20 kPa vertical stress was applied. The batch adsorption tests indicated that adsorption of methane onto bentonite is negligible. The concentration variation for the adsorption of methane onto bentonite can be neglected. However, methane concentration decreased by 14.2% for the test of methane adsorption onto GCL during the first 2–3 days. This is because methane was adsorbed by the geotextiles rather than by the bentonite in GCL. The large porosity and surface area of geotextiles provide lots of micropores for methane adsorption. Analytical model was then developed to analyze the performance of GCL-based liners system with respect to methane transport. The results indicate that methane emission fluxes for the case with SL + GCL are 7.8 and 5.1 times less than the cases with SL + CCL when the moisture contents were 25.9% and 35.1%, respectively. The methane emission fluxes for both of the SL + GCL and SL + CCL can be neglected when they are fully saturated. GCL is recommended to be used in arid and semi-arid regions rather than CCL. GCL is recommended to be used in arid and semi-arid areas rather than CCL. Advection plays a more important role in methane migration through SL + GCL and SL + CCL than that of diffusion. With moisture contents = 25.9% and 32%, methane emission flux attributed to advection accounts for more than 90% of the total emission flux for both cases of SL + GCL and SL + CCL. With the increase of moisture content of SL, the effectiveness of SL in reducing methane emission increases. The saved space for using GCL + SL composite cover compared with using a single SL cover is 0.7 m when the moisture content equals 25.9%, which is 0.5 m greater than the case when moisture content equals 32%. GMB plays a dominant role in inhibiting methane migration and reducing methane emission flux. When moisture content equals 25.9%, the methane emission fluxes for SL + GMB + GCL and SL + GMB + CCL are 343 times and 2643 times less than the cases with SL + GCL and SL + CCL, respectively.  相似文献   

2.
Zhao D  Little JC  Hodgson AT 《Indoor air》2002,12(3):184-190
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gasphase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.  相似文献   

3.
A triple-layer composite liner consisting of a geomembrane liner (GMB), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom liner system to isolate the contaminated leachates. In this paper, one-dimensional quasi-steady-state small deformation model (SDSS) was developed to investigate the behavior of organic chemicals transport in landfill composite liner system considering coupled effect of consolidation, diffusion and degradation. The first and second type bottom boundary conditions are used to derive the analytical solutions. The generalized integral transform technique (GITT) is adopted to derive the analytical solutions. The effect of consolidation on the performance of GMB/GCL/CCL with intact or leaking GMB is investigated. The triple liner under double drainage boundary condition (DDBC) has better performance compared to the case under single drainage boundary condition (SDBC). This is because the velocity induced by consolidation under DDBC is lower than that under SDBC. The effect of GCL consolidation shows an opposite trend compared to CCL consolidation. Considering GCL consolidation can increase the breakthrough time. The effective diffusion coefficient of GCL can be two magnitude orders smaller after consolidation, which provides a better diffusion barrier for the chemical transport. The effects of adsorption and degradation have been analyzed as well. Increasing the adsorption capacity of a deforming composite liner can increase the steady-state bottom flux, which shows the opposite tendency compared to the case without considering consolidation. This is due to the fact that for the case of a deforming composite liner, the advection induced by consolidation includes a new term due to the solid velocity. This velocity will result in the increase the mass of chemical migration through the composite liner.  相似文献   

4.
This paper presents analytical solutions for predicting one-dimensional contaminant diffusion in a four-layer sediment-cap system, which is typically encountered in subaqueous in-situ capping of contaminated sediments. The sediment-cap system is comprised of, from top to bottom, a layer of capping material (e.g., clean sand), a layer of reactive core mat (RCM), a layer of contaminated sediment and a layer of uncontaminated sediment. Two different bottom boundary conditions are considered, i.e., zero-concentration-gradient bottom boundary condition and zero-concentration bottom boundary condition, for which the method of separation of variables is used to obtain the analytical solutions. The extensively verified CST3 (Consolidation and Solute Transport 3) model is used to verify the proposed analytical solutions. Using the verified analytical solutions, parametric studies are conducted to investigate the effect of several important parameters on contaminant transport in the four-layer sediment-cap system. The results indicate that the cap thickness, the contaminated sediment thickness, the uncontaminated sediment thickness, the effect of RCM, and the RCM distribution coefficient have significant impact on contaminant diffusion in the four-layer sediment-cap system. The analytical solutions presented herein can be used to assist the design of subaqueous in-situ capping of contaminated sediments and to verify other numerical models.  相似文献   

5.
A biofilm reactor was developed to investigate the sorption of polycyclic aromatic hydrocarbons (PAH) as model compounds for hydrophobic organic contaminants (HOC) to intact microbial biofilms at environmentally realistic concentrations. When operated as a differential column batch reactor, the system can be used to study the thermodynamics as well as the kinetics of the exchange of HOC between an aqueous phase and microbial biofilms. Organic carbon normalized partition coefficients (K(oc)) for phenanthrene, fluoranthene and pyrene were at the lower end of those known for other organic sorbents. Intra-biofilm diffusion coefficients (D) were calculated from decrease in solute concentration over time using a model for diffusion through a plane sheet and ranged from 0.23 to 0.45x10(-9)cm(2)s(-1) for the three PAH. These diffusion coefficients are about four orders of magnitude lower than those reported in literature for free aqueous solution. These data and the experimental approach presented here are useful to assess the importance of microbial biofilms for exchange processes of HOC in heterogeneous systems such as water distribution systems, membranes and aquifers, sewer systems or surface soils.  相似文献   

6.
Constructed wetlands are widely used for a variety of environmental applications, such as wastewater treatment and recharge, and their efficacy is largely determined by the hydrodynamic characteristics of the flow system. An experimental study was carried out to quantify the lateral dispersion of passive substances in shallow zones of a constructed wetland wherein water flows though the interstices of the distributed vegetation. The experimental set up was designed to mimic the Tres Rios constructed wetland located in Phoenix, Arizona. The major emphasis was on the lateral diffusivity K(t) of a shallow zone with randomly distributed vegetation. The results are presented in the context of a simple theoretical model where K(t) is expressed in terms of the diameter of the plant stalk D(v), the characteristic distance between the plants d(v), the flow velocity U and the drag coefficient C(D) as (K(t)/UD(v))(d(v)/D(v))=betaC(D), where beta is a dimensionless constant. Fitting of data to the above model indicate that C(D), in general, is a function of the Reynolds number (Re). The data are also compared with a model proposed by Nepf et al. (Water Res 35 (1999) 479).  相似文献   

7.
8.
非饱和土中水分迁移及污染物扩散的离心模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
近十年来 ,土工离心机被作为模拟污染物扩散的一个重要手段。但是 ,目前能否采用离心机进行非饱和土中的水分迁移研究尚有争议 ;另外在无机可溶性污染物方面的研究也仅限于对惰性的、土壤吸附能力很低的无机物 (如钠离子 )在土体中的扩散机理研究。本文选用能够与土颗粒发生较强作用的重金属镉 ,利用土工离心机进行了非饱和土中一维模型的模拟研究 ,分析了非饱和土中含水率的变化和污染物的迁移机理 ,检验采用离心模拟方法研究污染物扩散机理的可行性 ,验证与污染物扩散机理相关的模型相似律。  相似文献   

9.
Zhang TF  Chen Q 《Indoor air》2007,17(3):167-177
In case contaminants are found in enclosed environments such as aircraft cabins or buildings, it is useful to find the contaminant sources. One method to locate contaminant sources is by inverse computational fluid dynamics (CFD) modeling. As the inverse CFD modeling is ill posed, this paper has proposed to solve a quasi-reversibility (QR) equation for contaminant transport. The equation improves the numerical stability by replacing the second-order diffusion term with a fourth-order stabilization term in the governing equation of contaminant transport. In addition, a numerical scheme for solving the QR equation in unstructured meshes has been developed. This paper demonstrates how to use the inverse CFD model with the QR equation and numerical scheme to identify gaseous contaminant sources in a two-dimensional aircraft cabin and in a three-dimensional office. The inverse CFD model could identify the contaminant source locations but not very accurate contaminant source strength because of the dispersive property of the QR equation. The results also show that this method works better for convection dominant flows than the flows that convection is not so important. PRACTICAL IMPLICATIONS: This paper presents a methodology that can be used to find contaminant source locations and strengths in enclosed environments with the data of airflow and contaminants measured by sensors. The method can be a very useful tool to find where, what, and how contamination has happened. The results can be used to develop appropriate measures to protect occupants in the enclosed environments from infectious diseases or terrorist releases of chemical/biological warfare agents as well as to decontaminate the environments.  相似文献   

10.
《Soils and Foundations》2022,62(5):101188
The stress state of the SB backfill in a full-scale cutoff wall test during the construction and consolidation was simulated by a finite-element model. The applicability of the model was demonstrated by good agreements between modeled and field monitored earth pressures and pore pressure in the backfill. Based on the analyzed results, the backfill consolidation process can be described as a four-staged cycle of load transfer: (1) the effective stress of the backfill increases due to the dissipation of excess pore pressure caused by self-weight consolidation of the backfill; (2) the increased effective stress results in settlement of the backfill and an increase of sidewall friction between the backfill and the sidewall interface; (3) the increased sidewall friction results in the transfer of backfill weight to the sidewalls and a decrease of the consolidation stress on the backfill; and (4) the decreased consolidation stress attenuates the decrease of excess pore pressure, influencing the subsequent consolidation. The cycle from (1) to (4) continues until the consolidation is completed.  相似文献   

11.
陈建峰  韩杰 《岩土工程学报》2009,31(9):1366-1370
对一初始直径0.76m、桩长5.05m的夯扩碎石桩单桩建立数值模型,精确模拟其夯扩和载荷试验分级加载过程,并对同一直径和桩长的未夯扩碎石桩进行了数值模拟以作比较分析。计算和实测的夯扩碎石桩桩顶和桩端荷载–沉降曲线吻合很好。未夯扩与夯扩碎石桩桩顶沉降比值在1.8~10.7之间,而两者的桩端沉降量都很小。未夯扩碎石桩桩身侧向膨胀比相同荷载下的夯扩碎石桩大很多。夯扩碎石桩桩身轴力沿深度衰减幅度较大;而未夯扩碎石桩当桩顶荷载较大时,由于桩身侧向膨胀增大,桩身侧摩阻力也随之增大,桩身轴力则表现为沿深度衰减幅度逐渐增大。  相似文献   

12.
The laboratory test results of 14 organic liquids (widely varying in nature) for high density polyethylene, linear low density polyethylene, very low density polyethylene and polypropylene geomembranes are presented at 25, 50 and 70°C. The partition coefficients have been calculated by monitoring the increase in mass of geomembrane immersed in the fluid of interest from its initial value until the mass of geomembrane becomes constant. From such data, diffusion and permeation coefficients have been calculated using Fick's equation from the initial linear portions of the sorption curves. Swelling of the geomembranes has also been studied from a measurement of an increase in volume, thickness and diameter. From a temperature dependence of sorption, diffusion and permeation coefficients, the Arrhenius parameters have been calculated.  相似文献   

13.
Due to water scarcity, the agricultural production in arid areas is dependent on a sustainable irrigation management. In order to optimize irrigation systems, the application of superabsorbent polymers (SAP) as soil amendments, frequently studied within the last years, may be an appropriate measure to enhance the water holding capacity and the plant-available water in poor arable soils. These persistent polymers are also able to reduce heavy metal and salt stress to crops by accumulating those inorganic compounds. However, the impact of SAP on fate and behavior of organic xenobiotics in soil is unknown. Therefore, transformation and sorption of the model substance 14C-imazalil were monitored without and with SAP amendment in silty sand and sand soil under laboratory conditions.Within the 100-d incubation period, the transformation of 14C-imazalil was not substantially affected by the SAP amendment even though the microbial activity increased considerably. In the silty sand soil, extractable residues dropped from 90% to 45% without and from 96% to 46% with SAP amendment. Non-extractable residues continuously increased up to 49% and 35% while mineralization reached 6% and 5%, respectively. In the sand soil, characterized by its lower microbial activity and lower organic carbon content, extractable residues merely dropped from 99% to 81% and from 100% to 85% while non-extractable residues increased from 2% to 14% and 1% to 10%, respectively. Mineralization was lower than 2%. The increased microbial activity, usually promoting transformation processes of xenobiotics, was compensated by the enhanced sorption in the amended soils revealed by the increase of soil/water distribution coefficients (Kd) of 26 to 42 L kg− 1 for the silty sand and 6 to 25 L kg− 1 for the sand, respectively.  相似文献   

14.
细水雾抑制扩散火焰的数值模拟   总被引:1,自引:0,他引:1  
通过实验和数值模拟研究了细水雾抑制扩散火焰的作用过程,探讨了细水雾抑制扩散火焰的机理和规律。细水雾抑制扩散火焰主要是通过水雾的蒸发潜热吸热、热容吸热、稀释氧气等作用,达到控制和扑灭火灾的目的。在实验的基础上,进行了一维数值模拟,其模拟结果与实验数据的物理趋势基本一致,验证了实验结果的合理性。  相似文献   

15.
Hanna K  Lassabatere L  Bechet B 《Water research》2012,46(14):4457-4467
In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.  相似文献   

16.
A micro/macro-level approach (MMLA) has been proposed which makes it possible for HVAC engineers to easily study the effect of diffuser characteristics and diffuser placement on thermal comfort and indoor air quality. In this article the MMLA has been used to predict the flow and thermal behavior of the air in the near-zone of a complex low-velocity diffuser. A series of experiment has been carried out to validate the numerical predictions in order to ensure that simulations can be used with confidence to predict indoor airflow. The predictions have been performed by means of steady Reynolds Stress Model (RSM) and the results have good agreement both qualitatively and quantitatively with measurements. However, measurements indicated that the diffusion of the velocity and temperature was to some extent under-predicted by the RSM, which might be related to high instability of the airflow close to the diffuser. This effect might be captured by employing unsteady RSM. The present study also shows the importance of detailed inlet supply modeling in the accuracy of indoor air prediction.  相似文献   

17.
深水港码头高承台桩土共同作用数值模拟分析   总被引:8,自引:0,他引:8       下载免费PDF全文
某深水港码头方案设计提出了3种结构形式:斜坡堤结构、单排斜顶桩板桩、双排斜顶桩板桩。本文采用平面弹塑性有限元法进行码头施工过程模拟,重点研究了码头平台沿水平方向位移、桩身轴力与弯矩分布,并选取了具有典型性的2个断面,持力层分别为微风化花岗岩层与粘土层,侧重进行了不同方案比较。计算结果很好地反映出了高承台桩基受力变形特点,并总结出高承台桩桩土共同作用变形的几点规律,可为同类工程的建设提供参考。  相似文献   

18.
Numerical modeling of thermally-induced fractures is a concern for many geo-structures including deep underground energy storage caverns. In this paper, we present the numerical simulation of a large-scale cooling experiment performed in an underground rock salt mine. The theory of fracture mechanics was embedded in the extended finite element code used. The results provide reliable information on fracture location and fracture geometry. Moreover, the timing of the fracture onset, as well as the stress redistribution due to fracture propagation, is highlighted. The conclusions of this numerical approach can be used to improve the design of rock salt caverns in order to guarantee their integrity in terms of both their tightness and stability.  相似文献   

19.
Degradation of pesticides in soils is both spatially variable and also one of the most sensitive factors determining losses to surface water and groundwater. To date, no general guidance is available on suitable approaches for dealing with spatial variation in pesticide degradation in catchment or regional scale modeling applications. The purpose of the study was therefore to study the influence of various soil physical, chemical and microbiological characteristics on pesticide persistence in the contrasting cultivated soils found in a small (13 km2) agricultural catchment in Sweden and to develop and test a simple model approach that could support catchment scale modeling. Persistence of bentazone, glyphosate and isoproturon was investigated in laboratory incubation experiments. Degradation rate constants were highly variable with coefficients of variation ranging between 42 and 64% for the three herbicides. Multiple linear regression analysis and Mallows Cp statistic were employed to select the best set of independent parameters accounting for the variation in degradation. Soil pH and the proportion of active microorganisms (r) together explained 69% of the variation in the bentazone degradation rate constant; the Freundlich sorption co-efficient (Kf) and soil laccase activity together explained 88% of the variation in degradation rate of glyphosate, while soil pH was a significant predictor (p < 0.05) for isoproturon persistence. However, correlations between many potential predictor variables made clear interpretations of the statistical analysis difficult. Multiplicative models based on two predictors chosen ‘a priori’, one accounting for microbial activity (e.g. microbial respiration, laccase activity or the surrogate variable soil organic carbon, SOC) and one accounting for the effects of sorption on bioavailability, showed promise to support predictions of degradation for large-scale modeling applications, explaining up to 50% of the variation in herbicide persistence.  相似文献   

20.
新回风比例对室内生物污染分布影响的数值分析   总被引:2,自引:0,他引:2  
采用数值计算方法 ,对带有回风的空调系统中类似SARS病毒颗粒的生物颗粒浓度的分布规律进行了模拟分析。提出了一种计算带有回风的空调系统中污染物浓度的方法 ,基于这种方法 ,比较了不同新风比下的室内生物颗粒浓度和安全距离。结果表明 ,新风比对整个空间的生物颗粒污染物的分布有重要影响。但是 ,全新风时和回风较少时并不存在质的差异 ,两种情况下的污染物平均浓度和安全距离都差别不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号