首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
单晶金刚石因具有最高的硬度和最低的摩擦系数常被用来制备超精密刀具,而表面粗糙度是影响刀具寿命的重要指标.提出采用机械研磨结合化学辅助机械抛光的组合工艺抛光单晶金刚石.实验优化并确定的加工工艺如下:先用5μm和2μm金刚石粉研磨单晶金刚石表面,然后采用化学机械的方法去除机械研磨带来的损伤.用该工艺抛光单晶金刚石,表面粗糙度Ra可达0.8 nm(测量区域70μm×53μm).表面拉曼光谱分析表明化学机械抛光的表面只有1 332 cm-1拉曼峰.  相似文献   

2.
为了提高微晶玻璃化学机械抛光(CMP)的材料去除速率(MRR),降低其表面粗糙度,利用自制的抛光液对微晶玻璃进行化学机械抛光,研究了4种含不同磨料(Si O2、Al2O3、Fe2O3、Ce O2)的抛光液对微晶玻璃化学机械抛光MRR和表面粗糙度的影响.利用纳米粒度仪检测抛光液中磨料的粒径分布和Zeta电位,利用原子力显微镜观察微晶玻璃抛光前后的表面形貌.实验结果表明,在相同条件下,采用Ce O2作为磨料进行化学机械抛光时可以获得最好的表面质量,抛光后材料的表面粗糙度Ra=0.4 nm,MRR=100.4 nm/min.进一步研究了抛光液中不同质量分数的Ce O2磨料对微晶玻璃化学机械抛光的影响,结果表明,当抛光液中Ce O2质量分数为7%时,最高MRR达到185 nm/min,表面粗糙度Ra=1.9 nm;而当抛光液中Ce O2质量分数为5%时,MRR=100.4 nm/min,表面粗糙度最低Ra=0.4 nm.Ce O2磨料抛光后的微晶玻璃能获得较低表面粗糙度和较高MRR.  相似文献   

3.
LBO晶体的超精密加工工艺研究   总被引:1,自引:0,他引:1  
采用Logitech PM5精密研抛机,通过机械抛光和化学机械抛光方法超精密加工LBO晶体;详细研究了LBO晶体的超精密加工工艺,并观察研磨和抛光等加工过程后的晶体表面形貌;研究抛光液和抛光垫在抛光中对LBO晶体表面微观形貌的影响.使用Wkyo激光干涉仪测量平面度,光学显微镜观察表面宏观损伤,原子力显微镜测量表面粗糙度和观察微观形貌.通过实验,实现高效率、高精度、高质量的LBO晶体的超精密加工,得到了LBO晶体的超精密加工工艺;超精密加工后晶体的表面粗糙度<0.2nm RMS,表面平面度<氇/10(氇=633nm),微观损伤少.  相似文献   

4.
单晶金刚石机械研磨与化学机械抛光工艺   总被引:1,自引:0,他引:1  
单晶金刚石在工业、国防等领域的应用日益广泛,对其加工表面质量的要求不断提高,使用常温低压的化学机械抛光可实现金刚石的超光滑低损伤表面加工.通过理论分析及实验研究得出,使用硅酸盐玻璃材质研磨盘进行研磨加工,可以将金刚石表面粗糙度Ra降至15~25 nm,且无明显机械划痕;在2 MPa压力及室温环境下进行单晶金刚石化学机械抛光实验,优选出Fenton试剂酸性水基抛光液,使用该抛光液抛光单晶金刚石可获得粗糙度Ra值4 nm以下的光滑表面.  相似文献   

5.
采用电子回旋共振(ECR)等离子体刻蚀与机械抛光相结合的方法抛光化学气相沉积(CVD)金刚石,运用扫描电镜、Raman光谱观察、分析了刻蚀与抛光后金刚石的表面形貌和质量变化,并与单纯的机械抛光相比较,研究了等离子体刻蚀对后续机械抛光的影响,结果发现:金刚石经ECR等离子体刻蚀后非晶碳含量有一定程度降低,刻蚀过程在金刚石晶面形成的疏松表面有利于机械抛光,金刚石表面平均粗糙度更加快速降低。对比实验表明等离子体刻蚀对机械抛光前期的抛光效率的增强效果更为明显,在ECR等离子体刻蚀后的金刚石样品经10min机械抛光后粗糙度从7.284下降到1.054μm,而直接机械抛光30min时金刚石的表面粗糙度为1.133μm,在机械抛光的初始阶段,等离子体刻蚀后的机械抛光效率是单纯机械抛光效率的3倍。最终,经过三次重复刻蚀后机械抛光,金刚石表面粗糙度降为0.045μm。  相似文献   

6.
采用超声精细雾化施液抛光对氮化硅陶瓷基体进行抛光,研究了不同的pH值、磨料浓度以及氧化剂含量对氮化硅陶瓷基体抛光的材料去除率的影响,优化了pH值、磨料浓度及氧化剂含量,并与传统的化学机械抛光进行了对比。结果表明:当二氧化硅磨粒质量分数为5wt%,氧化剂含量为1wt%,pH值为8时,材料去除率MRR为108.24nm/min且表面粗糙度Ra为3.39nm。在相同的抛光参数下,传统化学机械抛光的材料去除率MRR为125nm/min,表面粗糙度Ra为2.13nm;精细雾化抛光的材料去除率及表面粗糙度与传统抛光接近,但精细雾化抛光所用抛光液用量仅为传统抛光所用抛光液用量的1/9。  相似文献   

7.
胡扬轩  邓朝晖  万林林  李敏 《材料导报》2018,32(9):1452-1458
超精密抛光是一种降低表面粗糙度,获得高表面质量和表面完整性的加工技术。蓝宝石作为典型的难加工硬脆材料,传统抛光方法存在表面会产生崩碎、划痕等损伤,表面质量难以得到保证以及加工效率低等问题。本文综述了应用于蓝宝石材料的磁流变抛光、水合抛光、化学机械抛光和激光抛光等技术的原理与特点及其研究现状,并分析了各抛光技术的优缺点;从表面质量、磨料与磨液、效率与成本等方面对各抛光技术进行比较;介绍了复合抛光技术在蓝宝石材料中的应用;最后重点展望了蓝宝石材料超精密抛光技术的下一步研究。  相似文献   

8.
超精密抛光是一种降低表面粗糙度,获得高表面质量和表面完整性的加工技术.蓝宝石作为典型的难加工硬脆材料,传统抛光方法存在表面会产生崩碎、划痕等损伤,表面质量难以得到保证以及加工效率低等问题.本文综述了应用于蓝宝石材料的磁流变抛光、水合抛光、化学机械抛光和激光抛光等技术的原理与特点及其研究现状,并分析了各抛光技术的优缺点;从表面质量、磨料与磨液、效率与成本等方面对各抛光技术进行比较;介绍了复合抛光技术在蓝宝石材料中的应用;最后重点展望了蓝宝石材料超精密抛光技术的下一步研究.  相似文献   

9.
CVD金刚石涂层表面粗糙度高、颗粒大,不能满足精密和超精密加工的要求,在一定程度上制约了其发展和应用,降低CVD金刚石涂层表面粗糙度是迫切需要解决的难题.阐述了激光抛光CVD金刚石涂层机理,对比了微观抛光和宏观抛光的差异,总结了国内外激光抛光金刚石涂层研究进展,探讨了 目前激光抛光金刚石涂层的挑战和亟待解决的难点.  相似文献   

10.
高质量的表面加工是金刚石体块和薄膜生长以及器件制备的关键.本实验利用激光切割块状HTHP金刚石,并采用激光共聚显微镜(LEXT)、拉曼光谱(Raman)及X射线光电子谱(XPS)、电子背散射衍射(EBSD)分析金刚石的表面形貌、抛光过程中表面状态的转化情况,以及抛光后金刚石的表面损伤及结晶质量.经过机械抛光和化学机械抛光,激光切割带来的表面碳化层和损伤层被有效去除,金刚石的表面粗糙度达到0.764 nm.进一步地,通过微波等离子体化学气相沉积(MPCVD)法在HTHP金刚石籽晶上沉积同质薄膜材料,获得生长条纹规则、低应力、拉曼半宽2.1 cm-1、XRD半宽仅为87arcsec的高质量金刚石薄膜.  相似文献   

11.
Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost.By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere.However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality.In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS).The process of ball milling,composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed.The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix.The density of composite can be improved by mechanical alloying.The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sintering in hardness, high-temperature oxidation resistance and wearability.These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film.  相似文献   

12.
Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed.  相似文献   

13.
采用激光抛光和热化学抛光相结合的方法,对通过热丝CVD方法生长的金刚石薄膜进行了复合抛光处理.并利用X射线衍射仪(XRD)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对金刚石薄膜进行了表征.结果表明,所合成的金刚石薄膜是高质量的多晶(111)取向膜;经复合抛光后,金刚石薄膜的结构没有因抛光而发生改变,金刚石薄膜的表面粗糙度明显降低,光洁度大幅度提高,表面粗糙度Ra在100nm左右,基本可以达到应用的要求.  相似文献   

14.
Chemical mechanical polishing(CMP)was used to polish Lithium triborate(LiB3O5 or LBO)crystal.Taguchi method was applied for optimization of the polishing parameters.Material removal rate(MRR)and surface roughness are considered as criteria for the optimization.The polishing pressure,the abrasive concentration and the table velocity are important parameters which influence MRR and surface roughness in CMP of LBO crystal.Experiment results indicate that for MRR the polishing pressure is the most significant p...  相似文献   

15.
Chemical/mechanical polishing can be used to polish the rough surface of diamond films prepared by chemical vapor deposition (CVD). In this paper, a mixture of oxidizing agents (LiNO3 + KNO3) has been introduced to improve the material removal rate and the surface roughness in chemical/mechanical polishing because of its lower melting point. It had been shown that by using this mixture the surface roughness Ra (arithmetic average roughness) could be reduced from 8-17 to 0.4 μm in 3 h of polishing, and the material removal rate can reach 1.7-2.3 mg/cm2/h at the temperature of 623 K. Pure aluminium is compared with cast iron as the contact disk material in the polishing. Although the material removal rate of aluminiumdisk is lower than that of cast iron, it can eliminate the carbon contamination from the contact disk to the surface of diamond films, and facilitate the analysis of the status of diamond in the chemical/mechanical polishing. The surface character and material removal rate of diamond films under different polishing pressure and rotating speed have also been studied. Graphite and amorphous carbon were detected on the surface of polished diamond films by Raman spectroscopy. It has been found that the oxidization and graphitization combined with mechanical cracking account for the high material removal rate in chemical/mechanical polishing of diamond films.  相似文献   

16.
Porous alumina abrasives with different pore sizes were prepared using hydrothermal synthesis method by different hydrothermal temperatures. The pore structure, pore size and pore volume of the products were characterized by transmission electron microscopy and nitrogen adsorption desorption isotherm measurement. The chemical mechanical polishing (CMP) performances of porous alumina abrasives in hard disk substrate CMP were investigated. The results show that, the polished surface average roughness (Ra) decreases when the pore diameter of porous alumina abrasive increases. By comparison with solid alumina abrasive, the prepared porous alumina abrasives give lower Ra, and the porous alumina abrasive with 8.61 nm pore diameter has higher material removal rate under the same polishing conditions.  相似文献   

17.
Chemical vapor deposition (CVD) diamond film has high heat resistance, high thermal stability, and other excellent properties as nature single-crystalline diamond. The surface polishing, large size planarization, and high material removal rate of CVD diamond film are limited due to its special crystal structure and excellent physicochemical characteristics. Dynamic friction polishing (DFP) technology is a new and effective polishing method of diamond. In this paper, according to the theory of graphitization of diamond catalyzed by unpaired d electrons, two manganese-based alloys, Mn–Cu and Mn–Ni, are selected as polishing materials to achieve high quality and high efficiency polishing of diamond and verify the mechanism of DFP. Alloying polishing plates were prepared by mechanical alloying method and spark plasma sintering technology. The polishing results of Mn–Cu and Mn–Ni alloys were compared and analyzed through DFP experiments. The experimental results showed that since Mn–Ni alloy has more unpaired d electrons than Mn–Cu alloy, Mn–Ni alloy was more likely to form vacant rails and showed a higher material removal rate of CVD diamond film. The addition of Cu decreased the wear of polishing plate with the help of its lubrication action.  相似文献   

18.
Surfaces of copper polished with diamond abrasives were examined by transmission electron microscopy; surfaces abraded on silicon carbide papes were also studied for comparison. There was no evidence of an amorphous layer, known as the Beilby layer, on any of the polished surfaces; the surface layers were crystalline and all showed evidence of plastic deformation. Slab-shaped cells were present at the surfaces that appear to correspond to the microbands or shear bands that have been observed in heavily cold-rolled copper. Some recrystallization occurred in the surfaces polished with 6-μm diamond abrasive, indicating some relaxation and modification of the microband-shear band structure; small subgrains were also observed, and it is concluded that they were also recrystallized grains. The degree of deformation at the surface decreased with increasing fineness of polish (i.e., from 6-μm diamond abrasive to 1 μm). The abraded surfaces consisted almost entirely of small subgrains, indicating that the shear band structure at these surfaces had nearly all recrystallized. It was concluded, however, that the highest surface temperature was attained when polishing with 6-μm diamond abrasive and then was only 100-150°C.  相似文献   

19.
Micro bore finishing for metal and ceramic materials has been a challenge in the manufacturing industry. Unfortunately, little is understood about how to polish a micro bore and how to assess its inner wall quality because it is difficult to access the micro bore for either polishing or measurement. This article reports on a feasibility study of the abrasive flow polishing of micro bores of 260 ~ 500-µm diameters and 25 ~ 50 length/diameter ratios for both metal and ceramic materials. An abrasive flow polishing machine was designed and built with turbulent flow characteristics. Polishing of steel S45C bores of 400- and 500-µm diameters, stainless steel 304 bores of 500-µm diameter, and zirconia bores of 260-µm diameter was conducted. Surface roughness and topography of the polished inner walls of micro bores were characterized using profilometry and optical interferometry from the three-dimensional point of view. Significant reduction in surface roughness of the micro bore inner walls has been made in the polishing processes. The results indicate that it is feasible to apply the abrasive flow polishing technology for metal and ceramic micro bores of diameters of 260 µm or larger and the length/diameter ratios of 25 or higher. It is found that surface roughness of the polished micro bore inner walls decreases with an increase of the abrasive flow passes.  相似文献   

20.
Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films’ various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号