首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to determine the die swell behavior of a polymer melt and to design a die for forming a polymeric extrudate with a desired shape using profile extrusion. Polystyrene pellets were chosen to perform the profile extrusion experiments. First, the polystyrene pellets were melted and pushed through a quarter ring profile. The profile of the swelled extrudate agreed with the numerical predictions. A modified die was designed to produce a quarter ring profile extrudate based on the direct extrusion problem (DEP) prediction. Polystyrene pellets were also melted and pushed through the modified die. The experimental results were close to the computational results. The melting temperature, die length, and melting residence time affect die swell behavior. The die swell ratio becomes smaller as the melting temperature and melting residence time are increased. As the die length is increased, the die swell ratio is lowered. According to the die geometry predictions, an extrudate with the desired profile can be made precisely.  相似文献   

2.
应用熔体流动速率仪,在温度为90~140℃和载荷为2.16~12.50 kg的条件下,考察了温度、表观剪切速率(γα)及管壁剪切应力((Τ)R)对聚己内酯(PCL)熔体流动性能和挤出胀大比(B)的影响.结果表明:在实验条件下,PCL熔体的剪切流动基本服从幂律定律.表观剪切黏度ηa与绝对温度的关系符合Arrhenius方程,ηa随着γa或ΤR的增加而非线性减小.B随着温度的升高而非线性降低,随着γa或(Τ)R的增加而非线性增大,达到最大值后B则下降.  相似文献   

3.
Extrusion of a hot polymer melt through a cooler die zone substantially increases the extrudate swell of some thermoplastics. This effect was examined for commercial samples of low-density polyethylene, polypropylene, and polystyrene. Two conflicting effects come into play during extrusion of a thermoplastic. Colder melt temperatures promote increased extrudate swell, but the same conditions also facilitate molecular disentanglement and reduced melt elasticity and die swell. Since the extrusion process itself may affect the relation between die swell and melt temperature, laboratory-scale measurements for the design of processes like blow molding are better carried out with small-scale screw extruders than with capillary rheometers. For some applications it may be advantageous to use a polymer whose die swell is particularly responsive or unresponsive to die temperature variations. The procedure described in this article can be used effectively to monitor this characteristic.  相似文献   

4.
A general purpose finite element program was used to study polymer extrudate swelling. It is shown that viscosity variations due to externally applied cooling or heating have a significant influence on the swelling ratios of axisymmetric and planar extrudates. The effect is more pronounced at high Peclet and Weissenberg numbers. Swelling due to thermal effects and swelling due to viscoelasticity are not additive because of interrelations between the various mechanisms.  相似文献   

5.
The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.  相似文献   

6.
An experimental study was made of the effects of die geometry and extrusion velocity on parison swell for three high-density-polyethylene blowmolding resins. Four annular dies were used: a straight, a diverging, and two converging dies. Diameter and thickness swells were measured as functions of time under isothermal conditions and in the absence of drawdown. This was accomplished by extruding into an oil having the same density and temperature as the extrudate. It was observed that 60 to 80 percent of the swell occurs in the first few seconds and that equilibrium swell is attained only after 5 to 8 minutes have elapsed. The diameter and thickness swells appear to be independent phenomena, as the relationship between them depends strongly on die design. The ranking of the resins in terms of the magnitude of the swell was found to be the same for all die geometries and extrusion rates used.  相似文献   

7.
The melt fracture, shear viscosity, extensional viscosity, and die swell of a polypropylene resin were studied using a capillary rheometer and dies with a 0.05‐cm diameter and length/radius ratios of 10, 40, and 60. A temperature of 190°C and shear rates between 1 and 5000 s?1 were used. A modified Bagley plot was used with consideration of pressure effects on both the melt viscosity and end effect. The shear viscosity was calculated from the true wall shear stress. When the true wall shear stress increased, the end effect increased and showed critical stresses at around 0.1 and 0.17 MPa. The extensional viscosity was calculated from the end effect and it showed a decreasing trend when the strain rate increased. Both the shear and extensional viscosities correlated well with another polypropylene reported previously. The die swell was higher for shorter dies and increased when shear stress increased. When the shear rates increased, the extrudate changed from smooth to gross melt fracture with regular patterns (spurt) and then turned into an irregular shape. In the regular stage the wavelength of the extrudates increased when the shear rate increased. The frequency of melt fracture was almost independent of the shear rate, but it decreased slightly when the die length increased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1587–1594, 2003  相似文献   

8.
This article investigates the radial extrudate swell and velocity profiles of polystyrene melt in a capillary die of a constant shear‐rate extrusion rheometer, using a parallel coextrusion technique. An electro‐magnetized capillary die was used to monitor the changes in the radial extrudate swell profiles of the melt, which is relatively novel in polymer processing. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall extrudate swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the extrudate swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial extrudate swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the extrudate swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct center and the other around r/R of 0.65–0.85. The changes in the extrudate swell profiles across the die diameter were associated with, and can be explained using, the melt velocity profiles generated during the flow. In summary, the changes in the overall extrudate swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the center of the die. Polym. Eng. Sci. 44:2298–2307, 2004. © 2004 Society of Plastics Engineers.  相似文献   

9.
An experimental study of the influence of molecular weight distribution on the melt spinning and extrudate swell of a series of polypropylenes of varying molecular weight and distribution is reported. Emphasis is given to effects of variations of molecular weight distribution. Narrowing the molecular distribution increases the slope of the elongational viscosity–elongation rate curve, stabilizes the spinline relative to both random disturbances and draw resonance, and decreases both instantaneous and delayed extrudate swell. These results are interpreted in terms of viscoelastic fluid mechanics and earlier experimental studies by the authors of the influence of molecular weight distribution on rheological properties. The influences of these rheological factors on spinline structure development is discussed.  相似文献   

10.
We calculated the steady-state annular extrudate swell of polymer melts through flow geometries encountered in processes used to control parison thickness. A streamline-upwinding finite element method with an under-relaxation for the rate of deformation tensor was used. The Giesekus model was employed as the constitutive equation. An operation that widens the die gap is appropriate for the control of parison thickness corresponding to the change of die gap width. However, a control process that decreases the die gap width is not useful, because the parison thickness does not correspond to the die gap width. Furthermore, thickness swells change strikingly with the Weissenberg number. It is difficult to control the parison outer diameter in the case of a converging die, because the change of the outer diameter swell becomes large with increasing Weissenberg number. In the case of a diverging die, the changing value of the outer diameter swell is smaller than that in the case of a converging die.  相似文献   

11.
BACKGROUND: Extrudate swell is a common phenomenon in polymer processing. The investigation of its mechanism is of both scientific and industrial interest. RESULTS: The rheological parameters of a material described by the viscoelastic PTT (Phan‐Thien–Tanner) constitutive model are obtained by fitting the distributions of material functions detected with a strain‐controlled rheometer. The swelling ratios of low‐density polyethylene (LDPE) under different volume flow rates are indirectly obtained using a photographic technique. A mathematical model of extrudate swell is established and its finite element model is derived. A penalty method is employed to solve the extrudate swell problem with a decoupled algorithm. Computation stability is improved by using the discrete elastic‐viscous split stress algorithm incorporating the inconsistent streamline‐upwind scheme. CONCLUSION: The swell phenomenon of LDPE through a circular die is investigated using both experimental measurement and numerical simulation. The swelling ratios obtained from the simulation are compared with those measured: they agree well with each other. The essential flow characteristics of polymer melts are predicted and the mechanism of the swell phenomenon is further discussed. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
The extrudate swell effect has not received sufficient attention in modeling the film blowing process. This effect is addressed in this paper, and as an ab initio study, only viscous fluids were considered. The problem region was separated into two zones; the extrudate swell zone and the film blowing zone. The annular extrudate swell problem was solved using a finite element method. The film blowing process was modeled following Pearson and Petrie's (4) work. Although only viscous fluids were considered, the simulation results show a remarkable difference when swelling was included in the modeling. Viscoelastic fluids, which are more realistic for polymer melts, were not investigated here because of the so called high Weisenberg number problem. This is an open area still under investigation.  相似文献   

13.
PVC profile extrusion compounds have a unique morphology. While other polymers gradually decrease in extrusion die swell with increasing length/thickness (L/D) ratio, PVC profile extrusion compounds have a low die swell, quite independent of the die's L/D ratio in the range of 5 to 20. The fact that the die land length can be changed without changing the extrudate swell is an important consideration, which makes die design and balancing dies simpler and easier for PVC profile extrusion compounds. While other polymers substantially increase extrudate swell with increased shear rate, the swell of the PVC profile compounds is not much affected by shear or extrusion rate. This unique behavior allows wider processing latitude in profile extrusion and faster extrusion rates than with other polymers. Another unique factor in the rheology of PVC profile extrusion compounds is that extrusion die swell increases with increasing melt temperature, while other polymers have decreasing die swell with increasing melt temperature. The unusual rheology of PVC profile extrusion compounds is attributed to its unique melt morphology, where the melt flow units are 1 um bundles and molecules that have low surface to surface interaction and entanglement at low processing temperatures but increased melting and increased entanglement at higher processing temperatures. Other polymers, unlike PVC, have melt flow at the molecular level.  相似文献   

14.
基于流变学理论和Phan-Thien-Tanne本构方程,建立了三维等温黏弹共挤成型流动过程的数值模型。运用有限元方法对数值模型进行了模拟计算,研究了熔体层厚对共挤成型的影响,分析了熔体层厚对挤出胀大率、偏转变形及界面形貌的影响。结果表明:熔体层厚对挤出胀大率和界面形貌的影响较大,随着熔体层厚的增加,挤出胀大率减小;随着共挤出熔体层厚差值的增大,界面形状趋于不稳定;熔体离开口模后产生低黏度熔体向高黏度熔体一侧偏转变形,但变形程度受熔体层厚的影响不大。  相似文献   

15.
The effect of surface tension on extrudate swell of a Newtonian fluid from square and rectangular channels is presented. Surface tension decreases extrudate cross-sections in all cases examined. The influence on the shapes of final extrudate profiles is found to be greater for channels with higher aspect ratios. Surface tension has the greatest influence on the swell of the longer side of the extrudate while that of the shorter side is virtually unaffected. The effect of the capillary number can be significant and in certain cases should be considered in the design of extrusion dies.  相似文献   

16.
The extrudate swell problem is modeled as the stratified flow of two Newtonian isothermal fluids with differing viscosities. If the viscosity of the thin outer layer is the greater of the two, then enhanced swelling relative to the case of equal viscosity is observed. By suitable selection of the the viscosity ratio, this model can be used to represent thermal, shear-thinning, and elastic effects in extrusion. The stratified flow problem is solved using an efficient boundary element method. The model then provides a means of studying and predicting complex geometrical effects in profile extrusion without the burden of a full viscoelastic solution, which may yield a practical aid to the die design process.  相似文献   

17.
An experimental apparatus coupled with a rotating die system was especially designed and manufactured to study the rheological properties, flow patterns and swelling behavior of natural rubber (NR) compound for different shear rates and die rotating speeds at a test temperature of 110°C, the results being compared with those by the static capillary die. It was found that NR compound used exhibited psuedoplastic non‐Newtonian behavior. The rotation of the capillary die could reduce the extrusion load. The wall shear stress for any given shear rates increased with increasing die rotating speed. The fluctuation of the entrance pressure drop increased with increasing die rotating speed. The flow pattern development in the rotating‐die rheometer was different from that observed in the static die. The flow patterns in the rotating die were clearly unstable and contained two flow components which included axial flow along the barrel and circumferential flow at the die entrance. The size and shape of the axial and circumferential flows were more dependent on the piston displacement. It was found that the swelling ratio of the NR compound decreased with increasing die rotating speed. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

18.
An experimental study of extrudate swell has been carried out, involving five low-density polyethylene (LDPE) samples of approximately the same molecular size but of different frequencies of long-chain branching (LCB). The results show that the samples with higher frequencies of LCB exhibit a tendency to swell more than samples of lower frequency. This tendency is more pronounced for short L/D dies and high shear rates. It seems possible that LDPE samples of varying LCB frequencies can be differentiated by determining the swelling ratio (d/D) with orifice dies (L/D ? 0) at high throughput rates.  相似文献   

19.
Numerical viscoelastic simulations were carried out using a K-BKZ type of separable integral constitutive equation. Both reversible and irreversible models were tried for several types of damping functions to calculate the annular extrudate behavior of high-density polyethylene (HDPE). There are two aims in this study; first, to clarify the properties of these dumping functions, and second, to investigate the influence of rheological characteristics on annular extrudate swell. In these numerical simulations, relaxation spectrum and shear viscosity were fixed, and the other characteristics were varied. The reversional response of the damping function mainly has an effect on the magnitude of the area swell even if the die is straight. The irreversible model expresses the experimental results of annular extrudate swell better than the reversible model. The accurate fitting of N1 by the damping model is important for predicting it. The magnitude of N1 predicted from the Wagner exponential model is lower than that of the PSM model, and the area swell shows the same tendency as N1. A modified PSM model that allows the N1 curve to shift can fit the magnitude of area swell. The relationship between the diameter and thickness of the extrudate depends on N2/N1, and it was estimated by simple linear elasticity of solids. The time dependent viscosity varies with the type of damping function, and it influences the time-dependent swell.  相似文献   

20.
The extrudate swell ratio of five different thermoplastic melts flowing in a constant shear rate rheometer having a capillary die with and without application of magnetic field was studied. The effects of the magnetic flux direction and density, die temperature, and wall shear rate on the extrudate swell and flow properties were investigated. The experimental results suggested that an increasing wall shear rate increased the swelling ratio for the polystyrene (PS), LLDPE, and PVC melts, but the opposite effect was observed for the ABS and PC melts. The extrudate swell ratio for the PS, ABS, PC, and LLDPE melts decreased with increasing die temperature, the effect being reversed for the PVC melt. Thermoplastic melts having high benzene content in the side‐chain and exhibiting anisotropic character were apparently affected by the magnetic field, the extrudate swell ratio increasing with magnetic flux density. The effect of the magnetic field on the extrudate swell ratio decreased in the order of PS → ABS → PC. The extrudate swell ratio for the co‐parallel magnetic field system was slightly higher than that for the counter‐parallel magnetic field system at a high magnetic flux density. POLYM. ENG. SCI., 47:270–280, 2007. © 2007 Society of Plastics Engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号