首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of alloys and blends has increased gradually in the polymer industry so that the plastics industry has moved toward complex systems. The main reasons for making polymer blends are the strengthening and the economic aspects of the resultant product. In this study, I attempted to improve compatibility in a polymer blend composed of two normally incompatible constituents, namely, acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC), through the addition of a compatibilizer. The compatibilizing agent, styrene–butadiene–styrene block copolymer (SBS), was added to the polymer blend in ratios of 1, 5, and 10% with a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by scanning electron microscopy and differential scanning calorimetry. Further, all three blends of ABS/PC/SBS were subjected to examination to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, Izod impact strength, hardness, heat deflection temperature, Vicat softening point, and melt flow index. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2521–2527, 2004  相似文献   

2.
Interfacial agents as compatibilizers have recently been introduced into polymer blends to improve microstructure and mechanical properties of thermoplastics. In this way, it is possible to prepare a mixture of polymeric materials that can have superior mechanical properties over a wide temperature range. In this study, an incompatible blend of Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) Copolymer were made compatible by addition of 5, 10, and 20% Styrene–Isopren–Styrene Copolymer (SIS). The mixing operation was conducted using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by SEM and DSC techniques. Furthermore, the elastic modulus, tensile and yield strengths, percentage elongation, hardness, melt flow index, Izod impact resistance, heat deflection temperature (HDT), Vicat softening point values of polymer alloys of various ratios were determined. It was found that addition of SIS to the structures decreased the tensile strength, yield strength, elastic modulus, and hardness, whereas it increased Izod impact strength and percentage elongation values. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 559–566, 2006  相似文献   

3.
Thermal aging of immiscible bisphenol-A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) blends containing 25, 60, and 75% PC and the PC and ABS blend components have been studied. Changes in Izod impact properties and dynamic mechanical spectra are reported following aging at 90, 110, and 130°C for times up to 1500 h. PC/ABS blends containing 60 and 75% PC were found to retain high impact performance following aging at elevated temperatures, compared to the PC blend component. Dynamic mechanical spectroscopy is an effective probe for investigating the structure–property changes occurring and the mechanisms of aging. For PC and ABS, the changes were mainly due to physical aging of the amorphous polymers when aged below the glass-transition temperature. For the PC/ABS blends, oxidative degradation additionally contributes to loss of toughness. Although structure–property changes are related to the behavior of the blend components, additional factors of potential importance for multiphase polymer–polymer systems have been identified, including a redistribution of stabilizers during the blend manufacture. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Thermoplastic vulcanizates (TPVs) based on acrylonitrile–butadiene–styrene (ABS)/nitrile butadiene rubber (NBR) blends were prepared by dynamic vulcanization and then compatibilized by chlorinated polyethylene (CM). The effects of CM compatibilizer on the mechanical properties, Mullins effect, and morphological and dynamic mechanical properties of the TPVs were investigated systematically. Experimental results indicated that CM had an excellent compatibilization effect on the dynamically vulcanized ABS/NBR TPVs. Mullins effect results showed that the compatibilized ABS/NBR TPV had relatively lower internal friction loss than the ABS/NBR TPV, indicating the improvement of elasticity. Morphology studies showed that the fracture surfaces of ABS/CM/NBR TPVs were relatively smoother, indicating the improved elastic reversibility. DMA studies showed that the glass to rubber transition temperatures of ABS and NBR phases were slightly shifted toward each other with the incorporation of CM compatibilizer, which indicates the improvement of the compatibility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40986.  相似文献   

5.
Styrene–butadiene–styrene (SBS) was grafted with dibutyl maleate (DBM), methacrylic acid (MAA), or maleic anhydride (MAH) by 60Co γ‐rays. The grafted SBS was blended with polyamide 6 (PA6). The compatibility of the PA6/SBS blends was studied with scanning electron microscopy and rheological measurements. The results showed significant improvement in the compatibility of PA6 blended with MAH‐ or MAA‐grafted SBS, with the former being more effective, whereas grafting DBM was ineffective in this respect. Mechanisms of the compatibility enhancement and ineffectiveness are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The tensile properties of the blends containing neat acrylonitrile–butadiene–styrene (ABS), styrene–acrylonitrile (SAN) and the sodium sulphonated SAN ionomer have been investigated as a function of ion content of the ionomer in the blend. The tensile toughness and strength of the blends showed maximum values at a certain ion content of the ionomer in the blend. This is attributed to the enhanced tensile properties of the SAN ionomer by introduction of ionic groups into SAN and the interfacial adhesion between the rubber and matrix phase in the blend. The interfacial adhesion was quantified by NMR solid echo experiments. The amount of interphase for the blend containing the SAN ionomer with low ion content (3·1mol%) was nearly the same as that of ABS, but it decreased with the ion content of the ionomer for the blend with ion content greater than 3·1mol%. Changing the ionomer content in the blends showed a positive deviation from the rule of mixtures in tensile properties of the blends containing the SAN ionomer with low ion content. This seems to result from the enhanced tensile properties of the SAN ionomer, interfacial adhesion between the rubber and matrix, and the stress concentration effect of the secondary particles. © 1998 SCI.  相似文献   

7.
Blends of polycarbonate (PC) and poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) with different compositions are characterized by means of dynamic mechanical measurements. The samples show phase separation. The shift in the temperatures of the main dynamic mechanical relaxation shown by the blend with respect to those of the pure components is attributed to the migration of oligomers present in the ABS toward the PC in the melt blending process. A comparison with other techniques (dielectric and calorimetric analysis) and the application of the Takayanagi three block model confirm this hypothesis. In all the studied blend compositions (ABS weight up to 28.6%) the PC appears as the matrix where a disperse phase of ABS is present. The scanning and transmission electron microscopy micrographs show that the size of the ABS particles increases when the proportion of ABS in the blend increases. The FTIR results indicate that the interaction between both components are nonpolar in nature and can be enhanced by the preparation procedure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1507–1516, 2002  相似文献   

8.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

9.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

10.
The thermal degradation process of poly(vinyl chloride)/acrylonitrile–butadiene–styrene (PVC/ABS) blends was investigated by dynamic thermogravimetric analysis in the temperature range 50–650°C in air. The thermooxidative degradation of PVC/ABS blends of different composition takes place in three steps. In this multistep process of degradation the first step, dehydrochlorination, is the most rapid. The maximal rate of dehydrochlorination for the PVC blends containing up to 20% ABS-modifier is achieved at average conversions of 23.5–20.0%, i.e., at 13.5% for the 50/50 blend. The apparent activation energies (E = 103–116 kJ mol−1) and preexponential factors (Z = 2.11 × 109−3.45 × 1010min−1) for the first step of the degradation process were calculated after the Kissinger method. © 1996 John Wiley © Sons, Inc.  相似文献   

11.
Waste poly(ethylene terephthalate) (PET) from thin bottles was blended with acrylonitrile–butadiene–styrene (ABS) copolymer in different proportions, up to 10 wt %. Styrene maleic anhydride (SMA) copolymer was used as a compatibilizer. The tensile strength and heat deflection temperature of the blend were higher than that of virgin ABS. Flexural modulus remained unaffected, although a slight decrease in impact property was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2593–2599, 2001  相似文献   

12.
The crystallization behavior of an isotactic polypropylene/linear low-density polyethylene blend (PP/LLDPE) that is modified with styrene–ethylene/butylene–styrene triblock copolymer (SEBS) has been investigated using differential thermoanalysis and polarization microscopy. SEBS, which enhances the impact resistance of the blend, has an effect on both the nucleation and crystallization kinetics of the polypropylene component. Nucleation half times, nucleation densities, and spherulite growth rates are influenced by the presence of the copolymer. It is found that SEBS, depending on its concentration in the blend, increases the adhesion between matrix and PE domains and acts simultaneously as the matrix reinforcer. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
As novel piezoelectric materials, carbon‐reinforced polymer composites exhibit excellent piezoelectric properties and flexibility. In this study, we used a styrene–butadiene–styrene triblock copolymer covalently grafted with graphene (SBS‐g‐RGO) to prepare SBS‐g‐RGO/styrene–butadiene–styrene (SBS) composites to enhance the organic solubility of graphene sheets and its dispersion in composites. Once exfoliated from natural graphite, graphene oxide was chemically modified with 1,6‐hexanediamine to functionalize with amino groups (GO–NH2), and this was followed by reduction with hydrazine [amine‐functionalized graphene oxide (RGO–NH2)]. SBS‐g‐RGO was finally obtained by the reaction of RGO–NH2 and maleic anhydride grafted SBS. After that, X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and other methods were applied to characterize SBS‐g‐RGO. The results indicate that the SBS molecules were grafted onto the graphene sheets by covalent bonds, and SBS‐g‐RGO was dispersed well. In addition, the mechanical and electrical conductivity properties of the SBS‐g‐RGO/SBS composites showed significant improvements because of the excellent interfacial interactions and homogeneous dispersion of SBS‐g‐RGO in SBS. Moreover, the composites exhibited remarkable piezo resistivity under vertical compression and great repeatability after 10 compression cycles; thus, the composites have the potential to be applied in sensor production. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46568.  相似文献   

14.
Blends of polyethylene terephthalate (PET) and polypropylene (PP) at compositions 20/80 and 80/20 were modified with three different styrene–ethylene/butyl–ene-styrene (SEBS) triblock copolymers with the aim of improving the compatibility and in particular the toughness of the blends. The compatibilizers involved an unfunctionalized SEBS and two functionalized grades containing either maleic anhydride (SEBS-g-MAH) or glycidyl methacrylate (SEBS-g-GMA) grafted to the midblock. The effects of the compatibilizers were evaluated by studies on morphology and mechanical, thermal and rheological properties of the blends. The additon of 5 wt % of a SEBS copolymer was found to stabilize the blend morphology and to improve the impact strength. The effect was, however, far more pronounced with the functionalized copolymers. Particularly high toughness combined with rather high stiffness was achieved with SEBS-g-GMA for the PET-rich composition. Addition of the functionalized SEBS copolymers resulted in a finer dispersion of the minor phase and clearly improved interfacial adhesion. Shifts in the glass transition temperature of the PET phase and increase in the melt viscosity of the compatibilized blends indicated enhanced interactions between the discrete PET and PP phases induced by the functionalized compatibilizer, in particular SEBS-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:241–249, 1997  相似文献   

15.
16.
In order to prepare an ideal mixture, the physical and chemical properties of the constituent polymers must be known in detail. Thus, selection of the polymers that will constitute the mixture and a thorough study of the mixing methods and the economic factors become important. A rigid plastic is toughened by dispersing a small amount of rubbery material (generally 5–20%) in the rigid plastic matrix. Such a mixture of plastics is characterized by its impact resistance. Among thermoplastics toughened in this way are polystyrene (PS), poly(vinyl chloride), poly(methyl methacrylate), polypropylene, polycarbonate, and nylons, and recently thermoset resins such as epoxies, unsaturated polyester resins, and polyamids. In this study PS and high‐density polyethylene polymers were mixed in various ratios. In order to increase the compatibility of the mixtures, 5, 7.5, and 10% SBS copolymer was also added. The mixing operation was conducted by using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by using SEM and DSC techniques. Furthermore, the elastic modulus, yield and tensile strengths, percent elongation, Izod impact resistance, hardness, and melt flow index values of the polymer alloys of various ratios were determined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2967–2975, 2002; DOI 10.1002/app.2325  相似文献   

17.
The free volume parameters of styrene–butadiene–styrene copolymer/polystyrene (SBS/PS) blends were investigated with positron annihilation lifetime spectroscopy (PALS) in this study. The behaviors of free volume distribution, average free volume, and relative fractional free volume revealed the difference of interfacial miscibility. Based on different models, inter‐chain interaction parameter β, geometric factor γ, and hydrodynamic interaction parameter α obtained from free volume data were employed to further determine the effect of molecular architecture and styrene content on the miscibility. The results suggest the better miscibility in star‐shaped SBS/PS blends than that of corresponding linear SBS/PS systems, even than that of systems containing more styrene unit. In addition, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopy, which are sensitive to heterogeneities in larger domain size, give different results of miscibility from free volume data. It should be attributed the difference of characterization scale. The mechanical property corroborates the results of miscibility. POLYM. ENG. SCI., 54:785–793, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Photooxidative degradation and stabilization of a polystyrene–block–polybutadiene–block–polystyrene thermoplastic elastomer using a polychromatic UV light in air at 60°C has been studied by monitoring the appearance of the hydroxyl and carbonyl groups in Fourier transform infrared spectroscopy. The extent of photooxidative degradation in different samples has been compared. The rate of photooxidation was also estimated in the presence of different concentrations of 2,6‐di‐tert‐butyl‐4‐methylphenol [BHT], 2‐(2′‐hydroxy‐5′‐methylphenyl)benzotriazole [Tinuvin P] and tris(nonylphenyl) phosphite [Irgafos TNPP], and 1,2,2,6,6‐pentamethyl piperidinyl‐4‐acrylate was grafted onto the surface of the SBS film. The kinetic evolution of the oxidative reaction was determined. The morphological changes upon irradiation in the solution cast SBS films were studied by scanning electron microscopy. Based on the experimental data a suitable photooxidative degradation mechanism also has been proposed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1097–1102, 2000  相似文献   

19.
The performances of rubber‐toughened polymers like acrylonitrile–butadiene–styrene (ABS) are strongly affected by the type and amount of rubber phase. Characterization of rubber phase is an effective method to predict and control the physical and mechanical behaviors of ABS materials. In this work, different methods have been employed to determine the amount of rubber phase in ABS polymers. The first method was based on thermogravimetry using a particular step degradation of the polymer. In the second method, characteristic absorption bands in the Fourier transform infrared spectra were used to make a calibration curve to determine the rubber content of unknown ABS samples. The third method was based on variation of heat capacity of ABS polymers with increasing the rubber phase content. In the fourth method, a two‐step solvent extraction followed by centrifuging was used to separate the rubber particles of different ABS samples. Separation of hardened rubber particles was used to study the size and size distribution of rubber particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The morphologies of nylon 6/acrylonitrile–butadiene–styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3–20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile–butadiene–styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3512–3518, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号