首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electromagnetic interference shielding characteristics of polypropylene (PP) and poly(ether imide) (PEI) filled with synthetic graphite composites were studied. The thermal properties were characterized by differential scanning calorimetry and thermogravimetric analysis, whereas the morphologies of the composites were studied by scanning electron microscopy. The viscosity measurements were studied by advance rheometry. The measurements of shielding effectiveness (SE) were carried out in the frequency range 8–12 GHz (X‐band range). The return loss and loss due to absorption were also measured as a function of frequency in the X‐band range. It was observed that the SE of the composites was frequency dependent, and it increased with increasing frequency. The SE also increased with increasing filler loading. The PEI‐based composites showed a higher SE compared to that of the PP‐based composites. The correlation between SE and the conductivity of the various composites is also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The use of multi‐walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene‐toluene mixture. As‐prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0–12 GHz (X‐band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
The present investigation aims to develop thermally stable electromagnetic interference shielding materials from polysulfone (PSU) nanocomposites filled with multiwall carbon nanotubes (MWCNT) or carbon nanofibers (CNF). The effect of filler type and their structural features such as aspect ratio (length/diameter) and wall integrity on the different properties of nanocomposites has been investigated. Nanocomposite filled with MWCNT/CNF exhibits higher thermal stability compared with the neat PSU matrix. The onset degradation temperature of PSU at 532°C enhances to 537 and 538°C at 3 wt% MWCNT and 3 wt% CNF loading, respectively. CNFs filled nanocomposite shows higher electromagnetic interference shielding effectiveness (EMISE) compared with MWCNT filled one at the same filler loading. Compared with MWCNT, CNF imparts lower electrical percolation threshold. Nanocomposite filled with MWCNTs possesses percolation threshold at 1.5 wt%, whereas nanocomposite filled with CNFs possesses the same at 0.9 wt%. The EMISE of 20–45 dB are obtained from only 1 mm thick CNF filled nanocomposites from the filler loading 3 to 10 wt%. This value of EMISE above 40 dB suggests that the prepared nanocomposite can be used as an effective lightweight EMI shielding material for high frequency (8.2–12.4 GHz) applications, where high thermal stability is required. POLYM. COMPOS. 36:566–575, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
In this study, the electrical and thermal conductivity of polyether ether ketone (PEEK)/carbon nanotubes (CNTs) with different types, namely whisker CNTs (Wh-CNTs) and conventional CNTs were compared. PEEK/CNTs composites were melt mixed in PEEK via two screw extrusion technology. Moreover, the effects of different methods for mixing of PEEK/Wh-CNTs, namely, dry mixing, wet mixing and melt mixing, were compared. The electrical and thermal properties were analyzed. A high thermal conductivity value of about 0.741 W/(m K) could be obtained upon loading with 10 wt% Wh-CNTs and the PEEK/Wh-CNTs composites had low volume resistivity value of 10.96 Ω cm at 10 wt% loading via melt mixing. Thermal conductivity values of 1.066 W/(m K) (out-of-plane) and 1.50 W/(m K) (in-plane) were achieved with 10 wt% loading by wet mixing. Experimental results of out-of-plane thermal conductivity were more consistent with the Nan model. PEEK/Wh-CNTs composites prepared by wet mixing exhibited higher thermal conductivity than the composites mixed using the two other methods. As the content of Wh-CNTs in wet mixed PEEK/Wh-CNTs nanocomposites increased, electromagnetic interference (EMI) shielding effectiveness (SE) was improved. The PEEK/Wh-CNTs composites were 0.6 mm thick and showed an EMI SE of 21.5 dB.  相似文献   

5.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

6.
In the present work, Zeolite 13X and carbon black nanoparticles (CBNPs) reinforced polyvinylidene fluoride (PVDF) nanocomposites were obtained by a simple solvent casting technique. The structural, morphological and thermal properties of PVDF/Zeolite 13X/CBNPs nanocomposites with various loadings of Zeolite 13X and CBNPs were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy and thermo-gravimetric analysis. The dielectric studies were carried out in the 50 Hz–10 MHz frequency range at room temperature. The electromagnetic interference (EMI) shielding effectiveness (SE) of PVDF/Zeolite 13X/CBNPs nanocomposite was investigated in the 8–18 GHz frequency region (X-band and Ku-band). The maximum EMI SE of approximately −11.1 dB (8–12 GHz) and −11.5 dB (12–18 GHz) was observed for PVDF/CBNPs nanocomposites with 10 wt% loading of CBNPs. These findings emphasize the application of PVDF/Zeolite 13X/CBNPs nanocomposites as a potential EMI shielding material.  相似文献   

7.
In this work, α-MnO2 nanorods-polyaniline nanocomposites were synthesized using polymer coating and grafting approaches. The synthesized nanocomposites were characterized by XRD, FESEM, EDAX, TEM, TG-DTA and FT-IR techniques. The Electromagnetic properties of prepared samples were measured using vector network analyzer in the 8–18 GHz (X and Ku-Band) frequency region. The α-MnO2-NH2-PANI nanocomposite synthesized by grafting approach showed better electrical conductivity, excellent dielectric loss with superior microwave absorption ability. In comparison with pure MnO2, the microwave absorption characteristics of α-MnO2-NH2-PANI nanocomposite display considerable improvements, with an effective absorption band at 10.8 GHz and 14.5 GHz under ?10 dB and minimum reflection loss (RL) of ?30.79 dB at 14.5 GHz. The α-MnO2-NH2-PANI sample also showed considerable shielding effectiveness (SE) i.e. ?20.85 dB in the 8–18 GHz frequency region. The observed value of RL and SE surpasses the required value for being utilized at a commercial level. These results are surely helpful to explore the microwave absorption study of different combinations of organic/inorganic nanocomposite materials particularly for shielding and microwave absorption applications.  相似文献   

8.
Single‐walled carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were prepared using coagulation method. The electrical conductivity and the electromagnetic interference (EMI) shielding of SWNT/PMMA composites over the X‐band (8–12 GHz) and the microwave (200–2000 MHz) frequency range have been investigated. The electrical conductivity of composites increases with SWNT loading by 13 orders of magnitude, from 10?15 to 10?2 Ω?1 cm?1 with a percolation threshold of about 3 wt% SWNTs. The effect of the sample thickness on the shielding effectiveness has been studied, and correlated to the electrical conductivity of composites. The data suggest that SWNT/PMMA composites containing higher SWNT loading (above 10 wt%) be useful for EMI shielding and those with lower SWNT loading be useful for electrostatic charge dissipation. The dominant shielding mechanism of SWNT/PMMA composites was also discussed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
Graphene quantum dots (GQDs) reinforced poly(vinyl alcohol) (PVA)/polypyrrole (WPPy) nanocomposite films with various GQDs loadings were synthesized using the versatile solvent casting method. The structural and morphological properties of PVA/WPPy/GQDs nanocomposite films were investigated by employing Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The thermogravimetric analysis revealed enhanced thermal stability of synthesized nanocomposites while enhanced dielectric properties were also observed. The maximum dielectric constant value for PVA/WPPy/GQDs nanocomposite films was observed to be ε = 6,311.85 (50 Hz, 150°C). The electromagnetic interference (EMI) shielding effectiveness (SE) of nanocomposite films was determined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency region. The EMI SE was found to be increased from 0.8 dB for the pure PVA film to 9.8 dB for the PVA/WPPy/GQDs nanocomposite film containing 10 wt% GQDs loading. The enhanced EMI shielding efficiency of nanocomposite films has resulted from the homogenous dispersion of GQDs in PVA/WPPy blend nanocomposites. Thus, the prepared nanocomposites are envisioned to utilize as a lightweight, flexible, and low-cost material for EMI shielding applications.  相似文献   

10.
Nickel‐coated multiwalled carbon nanotubes (Ni‐MWNT) were prepared by electroless deposition with ultrasonic vibrations. The morphologies and components were characterized by scanning electron microscope and energy dispersive spectroscopy. Two types of fillers, multiwalled carbon nanotubes (MWNT) and Ni‐MWNT, were blended with poly(phthalazinone ether sulfone ketone)s (PPESK) by the solution‐mixing method, respectively. The electrical conductivity and microwave absorbing properties of the composites were investigated. The results show that Ni‐MWNT/PPESK composites have relatively lower electrical resistivity values than MWNT/PPESK, and in both cases the decrease in electrical resistivity indicates a similar percolation transition behavior in the same MWNT content region. Moreover, as MWNT loading is 5 parts per hundred parts of resin (phr), Ni‐MWNT/PPESK composite has the wider frequency region (9.5–13.5 GHz) of the reflection loss (RL) less than ?10 dB and the lower minimum value of RL (?27.5 dB) compared with MWNT/PPESK. The better microwave absorption properties can be attributed to the improved dielectric and magnetic properties of the fillers. A good correlation between electrical conductivity and microwave absorption was found for MWNT/PPESK composites. In addition, tensile test and thermogravimetric analysis indicate that introducing Ni‐MWNT into PPESK is favorable for the improvement of the mechanical properties and high temperature stability of the composites. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
In this report, multiwalled carbon nanotubes (CNT) embedded poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) microspheres (CNT/SEBS) were prepared by solvent evaporation method. Reduced graphene oxide (rGO) nanosheets were used to cover the surface of CNT/SEBS microspheres. The CNT/SEBS/rGO nanocomposites with special segregated conductive network were fabricated by hot pressing these as-prepared complex microspheres. The morphology, electrical percolation threshold, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNT/SEBS/rGO composites were characterized. The shielding mechanisms were discussed in detail. Analysis of electrical conductive performance shows that the electrical percolation threshold of rGO is 0.22 vol %. Results of EMI shielding test confirmed the synergistic effect between CNT and rGO. The EMI SE of the composite filled by 2.1 vol % CNT and 3.35 vol % rGO can achieve 26 dB in 8.2− 12.4 GHz (X band), which exceeds the basic requirement for commercial application (20 dB). Its reflectance coefficient (19–41%) indicates that the most part of incident electromagnetic (EM) wave energy is attenuated through absorption mechanism. This kind of absorptive EMI shielding material can be applied without serious secondary EM radiation pollution problems. The effects of filler content, molding temperature on EMI SE, and shielding mechanism were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48542.  相似文献   

12.
Electrical, morphological and rheological properties of polyethylene (PE)/multi-walled carbon nanotube (MWCNT) and poly(phenylene sulfide) (PPS)/MWCNT composites were studied with the MWCNT content using vector network analyzer, scanning electron microscopy and rotational rheometry. From the results of electrical conductivity and electromagnetic interference shielding efficiency (EMI SE) of the PE/MWCNT and PPS/MWCNT composites, the electrical percolation threshold of the composites has found to be 5 and 3 wt% MWCNT, respectively. From the results of the EMI SE of the composites, it was suggested that the increase in homogeneous dispersion of the MWCNT in the PPS matrix has been attributed to the increase in connectivity of the MWCNT-MWCNT network structure of the composite. Therefore, the higher values of the EMI SE with the MWCNT content were observed in the PPS/MWCNT than the PE/MWCNT composites. From the results of the rheological properties of the PE/MWCNT and PPS/MWCNT composites, the increase in the complex viscosity was observed for the PPS/MWCNT than the PE/MWCNT composites. The increase in complex viscosity maybe due to the increase in homogeneous dispersion of the MWCNT in the PPS matrix than that in the PE matrix. From the results of the rheological properties of the PE/MWCNT and PPS/MWCNT composites, it was suggested that the homogeneous dispersion of the MWCNT in the polymer matrix has affected the increase in complex viscosity of the PPS/MWCNT composite. This result of rheological behavior is consistent with the results of the EMI SE of the PE/MWCNT and PPS/MWCNT composites.  相似文献   

13.
The hexagonal boron nitride nanoparticles (h-BNNPs) reinforced flexible polyvinylidene fluoride (PVDF) nanocomposite films were prepared via a simple and versatile solution casting method. The morphological, thermal and electrical properties of h-BNNPs/PVDF nanocomposite films were elucidated. The electromagnetic interference (EMI) shielding properties of prepared nanocomposite films were investigated in the X-band frequency regime (8–12 GHz). The EMI shielding effectiveness (SE) was increased from 1 dB for the PVDF film to 11.21 dB for the h-BNNPs/PVDF nanocomposite film containing 25 wt% h-BNNPs loading. The results suggest that h-BNNPs/PVDF nanocomposite films can be used as lightweight and low-cost EMI shielding materials.  相似文献   

14.
Graphene nanoplatelets (GNP) is noncovalently functionalized with imidazolium-, pyridinium-, and vinyl-pyridinium-based ionic liquids containing bromide or bis(trifluoromethyl-sulfonyl)imide (TFSI) as the counteranions, and used to prepare poly (methyl methacrylate) (PMMA) nanocomposites by solution casting approach followed by compression molding technique. The PMMA composites loaded with 1.9 and 1.8 wt% of GNP in PMMA/GNP composite and PMMA/GNP/ionic liquids, respectively, were characterized by melting viscosity, thermogravimetric analysis and AC electrical conductivity (σAC). The microwave absorption properties at the X-band (8.2–12.4 GHz) frequency were measured for systems with 1 mm thickness using the metal-backed configuration. PMMA nanocomposites loaded with GNP/N-dodecyl-4-vinyl-pyridinium.TFSI (C12ViPy.TFSI) displayed higher thermal stability and higher σAC. This system also presented the best response in terms of microwave absorbing properties, with minimum reflection loss (RL) of around −6 dB at 8.7 GHz. Triple layered composite structures with layers of different conductivities and different stacking orders were also investigated in terms of reflection loss. Broadband absorption with minimum RL ≤ −10 dB (90% of electromagnetic attenuation) in the frequency between 10.2 and 12.4 GHz and better absorbing effectiveness were observed for the PMMA/GNP-PMMA/GNP/C12ViPy.TFSI-PMMA/GNP/C12ViPy.Br triple-layered system with 3 mm thickness.  相似文献   

15.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

17.
This study presents the preparation of electrically conducting poly(ε‐caprolactone) (PCL)/multiwall carbon nanotube (MWCNT) composites with very low percolation threshold (pc). The method involves solution blending of PCL and MWCNT in the presence of commercial PCL beads. The PCL beads were added into high viscous PCL/MWCNT mixture during evaporation of solvent. Here, the used commercial PCL polymer beads act as an ‘excluded volume’ in the solution blended PCL/MWCNT region. Thus, the effective concentration of the MWCNT dramatically increases in the solution blended region and a strong interconnected continuous conductive network path of CNT−CNT is assumed throughout the matrix phase with the addition of PCL bead which plays a crucial role to improve the electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity at very low MWCNT loading. Thus, high EMI SE value (∼23.8 dB) was achieved at low MWCNT loading (1.8 wt %) in the presence of 70 wt % PCL bead and the high electrical conductivity of ∼2.49×10−2 S cm−1 was achieved at very low MWCNT loading (∼0.15 wt %) with 70 wt % PCL bead content in the composites. The electrical conductivity gradually increased with increasing the PCL bead concentration, as well as, MWCNT loading in the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42161.  相似文献   

18.
Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10−6 S/cm and 6.61 × 10−5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of –10.5 dB at 9 GHz and a value around –8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range.  相似文献   

19.
In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing-assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption-dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry.  相似文献   

20.
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号