首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Telechelic dihydroxy poly(2‐vinylpyridine) (THPVP) samples with different molecular weights were synthesized by using lithium α‐methylnaphthalene as an anionic initiator in mixed solvents of benzene and tetrahydrofuran (THF). Then multiblock copolymers of poly(2‐vinylpyridine) (P2VP) and polyoxyethylene (PEO) were obtained by condensing THPVP and PEO with dichloromethane in the presence of potassium hydroxide. The effects of reaction time, molecular weight of PEO and THPVP, and raw meal ratio PEO/THPVP (w/w) were investigated. The best conditions were found. The copolymers can be purified by water and toluene. The purified copolymers were characterized by infrared (IR) and 1H nuclear magnetic resonance (1H‐NMR). The PEO segment content was calculated from the integral curve of 1H‐NMR spectra. The results showed that these multiblock copolymers were connected through oxymethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1632–1636, 2003  相似文献   

2.
BACKGROUND: The self‐assembly of amphiphilic copolymers has been demonstrated to be a powerful route towards supramolecular objects with novel architectures, functions and physical properties. In this study, the synthesis and morphology of amphiphilic linear polystyrene (PS)‐block‐poly(2‐vinylpyridine) (P2VP) and heteroarm star PS‐star‐P2VP copolymers are studied. The dispersion of silver nanoparticles with the prepared PS‐block‐P2VP and PS‐star‐P2VP copolymers is also discussed. RESULTS: Amphiphilic copolymers with different P2VP chain lengths were successfully synthesized using atom transfer radical polymerization (ATRP). The copolymers prepared had low polydispersity indices. Various aggregate morphologies, including spheres, vesicles, rods, large compound micelles, two‐dimensional ring‐like and three‐dimensional hollow structures, were formed by varying the hydrophilic coil length and the selective solvent content. Silver nanoparticles showed good dispersion behavior in both types of copolymers. CONCLUSION: Based on this study, it will be possible to prepare metal/copolymer nanocomposites by direct mixing. Further, the PS‐block‐P2VP and PS‐star‐P2VP copolymers prepared can be used in the preparation of nanoporous films as templates and nanoparticles as nanoreactors. They can also be applied in terms of oil recovery, paints and cosmetics formulations, as well as in pharmaceutical and medical applications as rheological agents. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

4.
Mono‐ and bifunctional poly(phenylene oxide) (PPO) macroinitiators for atom transfer radical polymerization (ATRP) were prepared by esterification of mono‐ and bishydroxy telechelic PPO with 2‐bromoisobutyryl bromide. The macroinitiators were used for ATRP of styrene to give block copolymers with PPO and polystyrene (PS) segments, namely PPO‐block‐PS and PS‐block‐PPO‐block‐PS. Various ligands were studied in combination with CuBr as ATRP catalysts. Kinetic investigations revealed controlled polymerization processes for certain ligands and temperature ranges. Thermal analysis of the block copolymers by means of DSC revealed only one glass transition temperature as a result of the compatibility of the PS and PPO chain segments and the formation of a single phase; this glass transition temperature can be adjusted over a wide temperature range (ca 100–199 °C), depending on the composition of the block copolymer. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

8.
High molecular weight polyoxyethylene (PEO) was synthesized by using a quaternary catalyst composed of triisobutyl aluminum, phosphoric acid, water, and N,N‐dimethylaniline (DMA). Optimum synthesis conditions and some properties of the product were studied. This catalyst showed high activity and the molecular weight of the polyoxyethylene obtained can approach one million. The activity of polymerization mainly depends upon the composition of catalyst. The optimum composition is as follows: i‐Bu3Al:H3PO4:H2O:DMA = 1 : 0.17 : 0.17 : 0.10–0.15 (molar ratio).The active centers of the catalyst was thus proposed. The high molecular weight PEO synthesized by this catalyst was blended with poly(2‐vinyl pyridine) (PVP) and then doped with LiClO4 and TCNQ to obtain a conductive elastomeric material. Ionic, electronic, and mixed (ionic–electronic) conductivities of blends were investigated. At a Li/EO molar ratio of 0.1 and a TCNQ/VP molar ratio of 0.5, the mixed conductivity of the blend of PEO/PVP/LiCIO4/TCNQ is higher than the sum of ionic conductivity of PEO/PVP/LiCIO4 and electronic conductivity of PEO/PVP/TCNQ, when the weight ratio of PEO to PVP is 6/4 or 5/5. It can reach 4 × 10?6 S/cm at room temperature. Differential scanning calorimetry, thermal gravimetric analysis, and the appearance of the blend showed that both TCNQ and LiClO4 can complex with PEO and PVP, thus enhancing the compatibility between PEO and PVP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The graft polymerization of methyl methacrylate and butyl acrylate onto poly(vinyl chloride‐co‐vinyl acetate) with atom transfer radical polymerization (ATRP) was successfully carried out with copper(I) thiocyanate/N,N,N,N,N″‐pentamethyldiethylenetriamine and copper(I) chloride/2,2′‐bipyridine as catalysts in the solvent N,N‐dimethylformamide. For methyl methacrylate, a kinetic plot of ln([M]0/[M]) (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) versus time for the graft polymerization was almost linear, and the molecular weight of the graft copolymer increased with increasing conversion, this being typical for ATRP. The formation of the graft polymer was confirmed with gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The glass‐transition temperature of the copolymer increased with the concentration of methyl methacrylate. The graft copolymer was hydrolyzed, and its swelling capacity was measured. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 183–189, 2005  相似文献   

10.
1H and 13C longitudinal relaxation times (T1) and relaxation times in the rotating frame (T) have been measured for poly(N‐vinylcarbazole) in the solid state in air and nitrogen atmospheres in an attempt to elucidate molecular motions. In air, the T1 relaxation of both 1H and 13C was dominated by interaction with absorbed paramagnetic oxygen. In nitrogen, the 13C T1 relaxation times were long (>300 s) and were averaged by 13C–13C spin diffusion. The 13C T relaxation times showed an exponential dependence on the strength of the rotating 13C magnetic field and were thus controlled by spin–spin processes rather than spin–lattice processes. © 2001 Society of Chemical Industry  相似文献   

11.
Poly(L‐lactide)‐poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. The reaction was carried out under mild conditions, using dicyclohexylcarbodiimide as the coupling agent and dimethylaminopyridine as the catalyst. The resulting copolymers were characterized by various analytical techniques, such as GPC, viscometry, 1H‐NMR, FTIR, DSC, X‐ray diffractometry, and contact angle measurement. The results indicated that these copolymers presented outstanding properties pertinent to biomedical use, including better miscibility between the two components, low crystallinity, and hydrophilicity. Moreover, the properties of the copolymers can be modulated by adjusting the block length of the two components or the reaction conditions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1729–1736, 2002; DOI 10.1002/app.10580  相似文献   

12.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

13.
Two fluorescent monomers N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine (vinyl‐PyPA) and 1‐vinyl pyrene (VPy) were synthesized in good yields. A series of soluble conductive vinyl copolymers P(PyPA‐co‐VPy) containing vinyl‐PyPA and VPy moieties in different composition ratios were prepared by free radical solution polymerization. These copolymers showed high Tg (190?201 °C) and good thermal stability. The photoluminescence emission maxima of the copolymers were all in the range 474.5?478.5 nm, which was similar to the poly(N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine) (P(PyPA)) (475 nm) but blue shifted compared with poly(1‐vinyl pyrene) (PVPy) (490.5 nm). The lifetime of the copolymers increased from 10.2 to 29.7 ns with an increase in pyrene content. The copolymers had higher quantum yields (0.51) than those of the homopolymers of P(PyPA) (0.48) and PVPy (0.13). The highest occupied molecular orbital of the copolymers remained relatively unchanged from P(PyPA), while the lowest unoccupied molecular orbital varied from ?2.41 eV to ?2.51 eV with an increase in pyrene ratio in the copolymers. The energy bandgaps of the copolymers (from 2.70 eV to 2.81 eV) were smaller than those of P(PyPA) (2.82 eV) and PVPy (3.47 eV). Two polymer light‐emitting diode (PLED) series were attempted including indium tin oxide (ITO) (fluorocarbon (CFx) treated)/P(PyPA‐co‐VPy)/LiF/Al and ITO(CFx treated)/P(PyPA‐co‐VPy)/1,3,5‐Tri(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl (TPBi)/LiF/Al. The results suggested that the PyPA moiety is hole conducting and the PLEDs can achieve high luminance from 650 to 1150 cd m?2 (at 100 mA cm?2) only when an electron injecting layer TPBi is employed. © 2013 Society of Chemical Industry  相似文献   

14.
The present work investigates the structure properties of copolymers using thermogravimetric analysis, hot stage microscopy, static light scattering, field emission scanning electron microscopy, X‐ray diffraction analysis and a Brookfield viscometer. Poly(potassium 1‐hydroxyacrylate) (PKHA) is a water‐soluble polymer. However, the copolymer of styrene and 2‐isopropyl‐5‐methylene‐1,3‐dioxolan‐4‐one is not water soluble at equal molar ratio because the polystyrene reduces the solubility. The effect of styrene on poly(potassium 1‐hydroxyacrylate‐co‐styrene) copolymer, i.e. poly(KHA‐co‐St), was investigated for the increasing solubility of the copolymer. The solubility was increased at a lower molar ratio of styrene such as 0.4 in the copolymer. It was found that the copolymer was soluble in water when a content ratio of 68/32 mol% of homopolymer was incorporated in poly(KHA68co‐St32) copolymer as determined by NMR analysis. Also the poly(KHA68co‐St32) copolymer was found to be salt tolerant, possessed water absorption capacity and was thermally stable up to 183 °C. Moreover, it is shown that the polystyrene content plays a key role in the thermal stability of the copolymer. © 2017 Society of Chemical Industry  相似文献   

15.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Proton conducting polymer electrolyte membranes were produced by blending of poly(2,5‐benzimidazole) (ABPBI) and poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS) at several stoichiometric ratios with respect to polymer repeating units. The membranes were characterized by using Fourier transform infrared spectroscopy for interpolymer interactions and scanning electron microscope for surface morphology. Thermal stability of the materials was investigated by thermogravimetric analysis. Glass transition temperatures of the samples were measured via differential scanning calorimetry. The spectroscopic measurements and water uptake studies indicate a complexation between ABPBI and PAMPS that inhibited polymer exclusion up on swelling in excess water. Proton conductivities of the anhydrous and humidified samples were measured using impedance spectroscopy. The proton conductivity of the humidified ABPBI:PAMPS (1 : 2) blend showed a proton conductivity of 0.1 S/cm, which is very close to Nafion 117, at 20°C at 50% relative humidity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
A ternary blend system comprising poly(cyclohexyl methacrylate) (PCHMA), poly(α‐methyl styrene) (PαMS) and poly(4‐methyl styrene) (P4MS) was investigated by thermal analysis, optical and scanning electron microscopy. Ternary phase behaviour was compared with the behaviour for the three constituent binary pairs. This study showed that the ternary blends of PCHMA/PαMS/P4MS in most compositions were miscible, with an apparent glass transition temperature (Tg) and distinct cloud‐point transitions, which were located at lower temperatures than their binary counterparts. However, in a closed‐loop range of compositions roughly near the centre of the triangular phase diagram, some ternary blends displayed phase separation with heterogeneity domains of about 1 µm. Therefore, it is properly concluded that ternary PCHMA/PαMS/P4M is partially miscible with a small closed‐loop immisciblity range, even though all the constituent binary pairs are fully miscible. Thermodynamic backgrounds leading to decreased miscibility and greater heterogeneity in a ternary polymer system in comparison with the binary counterparts are discussed. © 2003 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Poly(1,3‐cyclohexadiene) (PCHD) is of interest as a precursor for the synthesis of a new class of high‐performance hydrocarbon polymers. ω‐Functionalization of PCHD offers a new opportunity for the preparation of a variety of multifunctional PCHD derivatives. RESULTS: ω‐Functionalized PCHD containing a fluorenyl (or anthracenyl) group at the polymer chain end was successfully synthesized by post‐polymerization reaction of poly(1,3‐cyclohexadienyl)lithium (PCHDLi) with alkyl halides containing a fluorescent functional group. The degree of nucleophilicity of PCHDLi and the control of side reactions were very important factors to achieve a high conversion for the post‐polymerization reactions of PCHDLi. The ω‐functionalized PCHDs obtained exhibited strong photoluminescence and the wavelength of the fluorescence was adjustable by changing the structure of the ω‐functional group. CONCLUSION: ω‐Functionalized PCHD is a preferable precursor that can be utilized to obtain a new class of multifunctional hydrocarbon polymers containing six‐membered rings in the main chain. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
ω‐Pyrenyl‐functionalized poly(1,3‐cyclohexadiene) (PCHD) was successfully synthesized by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium (PCHDLi) with 1‐chloromethylpyrene (ClMe‐PY). This postpolymerization reaction consisted of two competitive reactions: the addition reaction of the pyrenyl group, and a hydrogen abstraction reaction (lithiation) as a side reaction. The degree of nucleophilicity of PCHDLi was a very important factor for suppression of the side reaction, and the PCHDLi/amine system, which has high nucleophilicity, produced high ω‐pyrenyl‐functionalization for PCHD. The UV/vis and fluorescence spectra for ω‐pyrenyl‐functionalized PCHD were bathochromically shifted, relative to that of pyrene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号