首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl pyrrolidone‐co‐isobutyl styryl polyhedral oligomeric silsesquioxane)s (PVP–POSS) were synthesized by one‐step polymerization and characterized using FTIR, high‐resolution 1H‐NMR, solid‐state 13C‐NMR, 29Si‐NMR, GPC, and DSC. The POSS content can be controlled by varying the POSS feed ratio. The Tg of the PVP–POSS hybrid is influenced by three main factors: (1) a diluent role of the POSS in reducing the self‐association of the PVP; (2) a strong interaction between the POSS siloxane and the PVP carbonyl, and (3) physical aggregation of nanosized POSS. At a relatively low POSS content, the role as diluent dominates, resulting in a decrease in Tg. At a relatively high POSS content, the last two factors dominate and result in Tg increase of the PVP–POSS hybrid. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2208–2215, 2004  相似文献   

2.
In this work, the nonisothermal and isothermal cold crystallization behaviors of poly(l ‐lactide) (PLLA)/trisilanolisobutyl‐polyhedral oligomeric silsesquioxanes (tsib‐POSS) nanocomposites with low tsib‐POSS contents were fully investigated. For all the samples, the variations of heating rate and the tsib‐POSS loading may influence the nonisothermal cold crystallization of PLLA. During the nonisothermal crystallization kinetics study, the Ozawa equation failed to fit the nonisothermal crystallization process of PLLA, while the Tobin equation could fit it well. For the isothermal crystallization kinetics study, the crystallization rates of all the samples increased with increasing crystallization temperature. The cold crystallization activation energy of PLLA was increased with 1 wt % tsib‐POSS. Moreover, the addition of tsib‐POSS and the increment of tsib‐POSS loading could increase the crystallization rate of PLLA, indicating the nucleating agent effect of tsib‐POSS. However, the crystallization mechanism and crystal structure of PLLA remained unchanged in the nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43896.  相似文献   

3.
Yonghong Liu  Kangming Nie 《Polymer》2005,46(25):12016-12025
The POSS-containing nanocomposites of epoxy resin were prepared via the co-curing reaction between octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) and the precursors of epoxy resin. The curing reactions were started from the initially homogeneous ternary solution of diglycidyl ether of bisphenol A (DGEBA), 4,4′-Diaminodiphenylmethane (DDM) and OpePOSS. The nanocomposites containing up to 40 wt% of POSS were obtained. The homogeneous dispersion of POSS cages in the epoxy matrices was evidenced by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and atomic force microscopy (AFM). Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that at the lower POSS concentrations (<30 wt%) the glass transition temperatures (Tgs) of the nanocomposites almost remained invariant whereas the nanocomposites containing POSS more than 40 wt% displayed the lower Tgs than the control epoxy. The DMA results show that the moduli of the nanocomposites in glass and rubbery states are significantly higher than those of the control epoxy, indicating the nanoreinforcement effect of POSS cages. Thermogravimetric analysis (TGA) indicates that the thermal stability of the polymer matrix was not sacrificed by introducing a small amount of POSS, whereas the properties of oxidation resistance of the materials were significantly enhanced. The improved thermal stability could be ascribed to the nanoscaled dispersion of POSS cages and the formation of tether structure of POSS cages with epoxy matrix.  相似文献   

4.
A series of poly(methyl methacrylate) (PMMA) containing octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) nanocomposites were synthesized by solution polymerization. The products were characterized by FTIR, 1H NMR, GPC, TEM, DSC and TGA. The actual contents of OV-POSS in the obtained products and the reaction degree of the vinyl groups in the POSS were calculated on the basis of FTIR, TGA and 1H NMR data respectively. The DSC and TGA results indicate that the incorporation of POSS molecules could improve the thermal properties of PMMA nanocomposites significantly. The glass transition temperature (Tg) and thermal decomposition temperature (Tdec1) of the nanocomposite with 12.27 wt % of OV-POSS were increased by 23 °C and 93 °C correspondingly. In our experiment, the improved thermal properties were largely attributed to the nanoreinforcement effect of POSS cages and the formation of star-shaped structures with cubic silsesquioxane core.  相似文献   

5.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Poly (imide–benzimidazole)/polyhedral oligomeric silsesquioxane (POSS), nanocomposites were prepared by the reaction of the heterocyclic diamine monomer 2,2‐(1,2‐phenylene)‐bis(5‐aminobenzimidazole), octa(aminophenyl)silsesquioxane(OAPS), and benzophenonetetra carboxylic dianhydride (BTDA). The structure of the prepared monomers was confirmed by FTIR and NMR (29Si, 1H, and 13C) spectral studies. The thermal stability behavior of the poly (imide–benzimidazole) and poly (imide–benzimidazole)–POSS nanocomposite films were studied by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). Dynamic mechanical analysis shows that the glass transition temperatures of the polyhedral oligomeric silsesquioxane (POSS) containing poly (imide–benzimidazole) nanocomposites are higher than that of the corresponding neat poly (imide–benzimidazole) systems. Decrease in the dielectric constant was observed with an increase in the determined amount of amino‐functionalized POSS in the poly (imide–benzimidazole) matrix. Further, the morphological studies were carried out by X‐ray diffraction and transmission electron microscopy. POLYM. COMPOS., 34:825–833, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
Poly(ethylene terephthalate) (PET) containing epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS) was prepared by melt‐mixing and in situ polymerization methods. The melt‐mixed composite showed phase separation while the in situ polymerized composite did not, based on SEM characterization. During melt mixing, the reaction between the epoxy groups of POSS and hydroxyl groups of PET occurred, based on DSC results. DSC results on the in situ polymerization product showed formation of a lower‐melting component compared with PET. The tensile strength and modulus of the melt‐mixed composite fiber decreased compared with those properties of PET, whereas those of the in situ polymerized composite showed slightly higher values than PET despite the relatively small amounts (1 wt%) of POSS used. Dynamic mechanical analysis results showed an increase in storage modulus for the in situ polymerized composite of POSS and PET compared with PET over the temperature range of 40 °C to 140 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Yuan-Jyh Lee  Chih-Feng Huang 《Polymer》2006,47(12):4378-4386
A new class of polybenzoxazine/POSS nanocomposites with network structure is prepared by reacting multifunctional benzoxazine POSS (MBZ-POSS) with benzoxazine monomers (Pa and Ba) at various compositional ratios. Octafunctional cubic silsesquioxane (MBZ-POSS) is used as a curing agent, which is synthesized from eight organic benzoxazine tethers through hydrosilylation of vinyl-terminated benzoxazine monomer (VP-a) with octakis(dimethylsiloxy)silsesquioxane () using a platinum complex catalyst (Pt-dvs). Incorporation of the silsesquioxane core into polybenzoxazine matrix could significantly hinder the mobility of polymer chains and enhance the thermal stability of these hybrid materials. For these nanocomposites, increasing the POSS content in the hybrids is expected to improve its thermal properties with respect to the neat polybenzoxazine. The morphology feature is useful to explain the thermal property changes (Tg and Td) and AFM images show that the presence of POSS aggregation in larger scales occurs at higher POSS contents. The reason of the heterogeneous phase separation may be from the less compatibility of the inorganic silsesquioxane core with organic benzoxazine species and the homopolymerization of MBZ-POSS. In the course of the formation of the polybenzoxazine/POSS hybrids, POSS particles were separated from the polybenzoxazine rich region, leading to POSS rich domains in the range of 50-1000 nm.  相似文献   

9.
In this work, nanocomposites of poly (m‐xylene diamide) (MXD6) with dodecaphenyl polyhedral oligomeric silsesquioxane (POSS), montmorillonite (MMT) and their combination (MMT‐POSS) were produced by melt‐compounding and their structure–property relationships were established. The montmorillonite was found to be homogeneously dispersed affording intercalated disordered structures whilst the distribution and dispersion of the POSS was rather skewed with the presence of phase separated crystalline aggregates of up to several hundred nanometers. Significant differences in properties were observed depending on the type of nanoscale filler present in the nanocomposites. The montmorillonite provided some improvements in stiffness and dynamic response of MXD6. POSS on the other hand improved the ductility of MXD6 and had a plasticizing effect. It has been suggested that there might be a lubricating action at the interface inducing better molecular motion between polymer chains of MXD6. By combining MMT and POSS, the properties of the corresponding nanocomposites were found to be intermediate. The thermal stability of MXD6 was enhanced in the nanocomposites although a negative deviation from the theoretical model was observed when POSS was present in the nanocomposites. This observation underlies some antagonistic effects which have been attributed to the presence of catalytic benzene radicals during thermal degradation. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Yonghong Liu 《Polymer》2006,47(19):6814-6825
A readily available octa(3-chloropropyl) polyhedral oligomeric silsesquioxane (POSS) [(ClCH2CH2CH2)8Si8O12] framework was used to prepare octa(3-hydroxypropyl) POSS [(HOCH2CH2CH2)8Si8O12], which was further used as an initiator to synthesize star poly(?-caprolactone) with POSS core via ring-opening polymerization catalyzed by Stannous (II) octanoate [Sn(Oct)2]. The organic-inorganic star PCLs were characterized by means of gel permeation chromatograph (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). The wide-angle X-ray diffraction (WAXRD) experiments indicate that the presence of POSS cores did not alter the crystal structure of PCL. The star PCLs exhibited enhanced melting temperatures in comparison with the linear counterpart. The isothermal crystallization kinetics shows that both the overall crystallization rate and the spherulitic growth rate of the star PCLs increased with increasing the concentration of POSS (or with decreasing the arm lengths of the stars). The fold surface free energy of the star PCLs decreased with increasing the concentration of POSS. These results could be interpreted based on the effect of the heterogeneous nucleation of POSS cores, which accelerates the process of crystallization.  相似文献   

11.
A highly branched hybrid copolymer based on polyhedral oligomeric silsesquioxane (POSS) was designed to improve the brittleness of poly(d,l‐lactide) (PDLLA). The toughening material was synthesized using POSS‐OH as the core, which initiated the ring‐opening polymerization of ε‐caprolactone and d,l‐lactide sequentially to form the highly branched POSS‐g‐poly (ε‐caprolactone)‐b‐poly(d,l‐lactide) (POSS‐g‐PCL‐b‐PLA) copolymer with eight PCL‐b‐PLA arms. The POSS‐g‐PCL‐b‐PLA copolymer had a very good dispersion in the PDLLA matrix with the size of microdomains smaller than 1 µm when added at a low content below 10 wt %. In related to the nano‐scale size of microdomains in the blends, the crystallinity of PCL blocks was significantly suppressed. Thus, the addition of POSS‐g‐PCL‐b‐PLA is very effective to improve the roughness of the matrix polymer when added at a low content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40776.  相似文献   

12.
The biodegradable poly(butylene succinate) (PBS)/poly(ethylene oxide)‐polyhedral oligomeric silsesquioxane (PEO‐POSS) nanocomposites were prepared by the solution blending and melt‐injection methods. The effect of PEO‐POSS on the non‐isothermal and isothermal crystallization, morphology, as well as mechanical properties of PBS was carefully investigated. The PEO‐POSS nanoparticles dispersed well in the PBS matrix, with the diameters around 30 nm. From isothermal crystallization analysis, the incorporation of PEO‐POSS enhanced the crystallization of PBS due to the heterogeneous nucleation effect while the crystal structure of PBS remained. PBS/PEO‐POSS nanocomposites showed of higher glass transition temperatures than that of neat PBS, attributing to the existence of PEO‐POSS decreasing the flexibility of PBS chains. The elongation at break of the PBS/PEO‐POSS nanocomposites reached the maximum value with PEO‐POSS content of 5 wt%. However, the elastic modulus of PBS decreased after the incorporation of PEO‐POSS. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
A method of preparing linear polyamide‐polyhedral oligomeric silsesquioxane (PA‐POSS) hybrid nanocomposites in a reactor using thionyl chloride/triethylamine (TEA) as the activating agent was investigated. Soluble polyamic acid (PAA) having carboxylic acid end groups were first synthesized by condensation reaction of 2,2‐ bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]‐1,1,1,3,3,3‐hexafluoropropane, (6FODA). The PAA was acylated by SOCl2/TEA and followed by the addition of different mole percentages of aminopropyl heptacyclopentyl POSS (AP‐POSS) and 3‐(trifluoromethyl) aniline to get the PA‐POSS hybrid nanocomposites. The chemical structure of PA‐POSS hybrid nanocomposites were investigated by ATR‐FTIR and NMR spectroscopic techniques. Thermal and morphological properties of PA‐POSS were influenced by changing the percentage of POSS and investigated by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Wide angle X‐ray diffraction and contact angle measurements. The PA‐POSS with hexafluoroisopropylidene and POSS groups have higher bulk density resulting in higher free volume and then increasing the solubility property. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Poly(ε‐caprolactone) (PCL)/trisilanolphenyl polyhedral oligomeric silsesquioxane (TspPOSS) nanocomposites were prepared by solution mixing followed by film casting. Wide‐angle X‐ray diffraction and field‐emission scanning electron microscopy observations showed that the POSS molecules formed crystal domains and dispersed uniformly on the nanoscale in the PCL matrix. Fourier transform infrared analysis of the nanocomposites revealed that there are hydrogen‐bonded interactions between the silanol group of the TspPOSS and carbonyl oxygen of the PCL. Differential scanning calorimetry, tensile testing, and dynamic mechanical analysis (DMA) showed that, with increasing POSS content in the nanocomposites, the melting temperature and degree of crystallinity decreased while glass transition temperature, tensile modulus and strength increased without sacrificing the ductility of the PCL. DMA results also demonstrated the presence of a rubbery plateau above the melting temperature of the PCL/TspPOSS nanocomposites, and the moduli at the plateau region increased with increasing POSS content in the nanocomposites, implying that the PCL/TspPOSS nanocomposites formed a physically crosslinked structure. The physically crosslinked PCL/TspPOSS nanocomposites exhibited a thermally triggered shape memory effect. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
Epoxycyclohexyl polyhedral oligomeric silsesquioxane (epoxy–POSS) was used to prepare a chain‐extended poly(butylene terephthalate) (PBT) with a twin‐screw extruder. The effect of epoxy–POSS on the melt flow index, mechanical properties, rheological behavior, and thermal properties of chain‐extended PBT was investigated. PBT had an intrinsic viscosity of 1.1 dL/g and a carboxy1 content of 21.6 equiv/106 g, but the PBT chain‐extended with 2 wt % epoxy–POSS had an intrinsic viscosity of 1.7 dL/g and a carboxy1 content lower than 7 equiv/106 g. After the addition of epoxy–POSS, the melt flow index of PBT dramatically decreased, the elongation at break increased greatly, the tensile strength increased slightly, and the thermal stability was also improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Variously substituted polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites of general formula R7R′(SiO1.5)8/PS (where R = isobutyl and R′ = 4‐methoxyphenyl, 4‐methylphenyl, 3,5‐dimethylphenyl, 4‐fluorophenyl, 2,4‐difluorophenyl, 4‐chlorophenyl) were prepared by in situ polymerization of styrene in the presence of 5% w/w of POSS. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy and FTIR spectroscopy evidenced the presence of filler‐polymer interactions. Inherent viscosity (ηinh) determinations indicated that the average molar mass of polymer in halogenated derivatives was lower than neat PS, and were in agreement with calorimetric glass transition temperature (Tg) measurements. Finally, a comparative study concerning the thermal stability of synthesized nanocomposites was carried out in both inert (flowing nitrogen) and oxidative (static air) atmospheres into a thermobalance, in the scanning mode, at 10°C min−1, and the temperatures at 5% mass loss (T5%), of various compounds were determined. The results were discussed and interpreted. POLYM. COMPOS., 35:151–157, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
The purpose of this research was to study the thermal degradation kinetics of nanocomposites of poly(l ‐lactide) (PLLA) with carbon nanotubes (CNT) in order to provide further insight into their thermal stability. Nanocomposites were prepared by solvent casting with 1, 3, and 5% by weight of pristine CNT (P‐CNT) or functionalized CNT (F‐CNT), and were characterized using infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic‐mechanical‐thermal analysis. The kinetic parameters of thermal decomposition were determined employing Coats‐Redfern method to calculate the reaction order and E2 function model to calculate the activation energy (Ea). We found no major changes in PLLA glass transition temperatures due to CNT presence, but melt‐crystallization temperature increased slightly in some composites. In general, composites consisting of 3% or 5% of F‐CNT had superior thermal stability than did pure polymer or P‐CNT composites. This improved thermal stability was revealed by slightly higher degradation and onset temperatures, and Ea obtained from kinetic analysis. In addition, 3% or 5% of F‐CNT in PLLA composites slightly enhanced the storage modulus above the glass transition. Therefore, functionalization promoted, in some extent, better morphology and dispersion of CNT into the matrix, which was responsible for improved thermal stability and thermomechanical performance of composites at higher temperatures relative to pure polymer. POLYM. ENG. SCI., 55:710–718, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) with well defined architecture has been prepared by copolymerization of octakis(glycidyldimethylsiloxy)octasilsesquioxane (Epoxy-POSS), 4,4′-oxydianiline diamine (ODA), and 4,4′-carbonyldiphthalic anhydride (BTDA). In these nanocomposite materials, the equivalent ratio of the Epoxy-POSS and ODA are adjustable, and the resultant PI-POSS nanocomposites give variable thermal and mechanical properties. More importantly, we intend to explore the possibility of incorporating POSS moiety through the Epoxy-POSS into the polyimide network to achieve the polyimide hybrid with lower dielectric constant (low-k) and thermal expansion. The lowest dielectric constant achieved of the POSS/PI material (PI-10P) is 2.65 by incorporating 10 wt% Epoxy-POSS (pure PI, k=3.22). In addition, when contents of the POSS in the hybrids are 0, 3, 10 wt% (PI-0P, PI-3P, PI-10P), and the resultant thermal expansion coefficients (TEC) are 66.23, 63.28, and 58.25 ppm/°C, respectively. The reduction in the dielectric constants and the resultant thermal expansion coefficients of the PI-POSS hybrids can be explained in terms of creating silsesquioxane cores of the POSS and the free volume increase by the presence of the POSS-tethers network resulting in a loose PI structure.  相似文献   

19.
A novel octavinyl polyhedral oligomeric silsesquioxane/fluorine containing poly (styrene‐acrylate) (OvPOSS/FPSA) composite latexes with star‐type structure was synthesized by emulsion copolymerization. The structures of OvPOSS/FPSA composite materials were characterized by Fourier Transform Infrared, which indicated that OvPOSS could be grafted onto FPSA latexes by emulsion copolymerization. Transmission electron microscopy images disclosed that FPSA latexes possessed obvious core–shell structure and OvPOSS/FPSA composite latexes probably present star‐shape structure. Dynamic light scattering data indicated that the average diameter of OvPOSS/FPSA was slightly larger than that of FPSA, which was probably attributed to the encapsulation of POSS cages. Atomic force microscopy photos illustrated that the grafting reaction had increased the roughness of the composite surface. The water contact angle of composite films was found increasing as the percentage of OvPOSS increasing. Thermogravimetric analysis curves demonstrated that the OvPOSS/FPSA composite films displayed much better thermal stability than that of FPSA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43455.  相似文献   

20.
A series of silicon‐containing arylacetylene resins containing polyhedral oligomeric silsesquioxane (PS resins) were synthesized by the hydrosilylation reaction between poly(dimethylsilyleneethynylenephenyleneethynylene) (PMSEPE) and octakis(dimethylsiloxy)octasilsesquoixane ( ) in the presence of a platinum catalyst (Pt‐dvs). The chemical structures and properties of PS resins were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, rheological analysis, differential scanning calorimetry, dielectric measurement, thermogravimetric analysis, and scanning electron microscopy. The results show that PS resins can be crosslinked to form thermosets at temperatures less than 260°C. With the increment of , the dielectric constants of the thermosets gradually decrease from 2.91 to 2.73. The thermooxidative stabilities of PMSEPE thermosets are obviously improved with the incorporation of . POLYM. ENG. SCI., 55:316–321, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号