首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3‐hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D‐scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer‐based 3D composite scaffolds produced, indicating a non‐toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60 ‐ 83 µm) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering. © 2016 Society of Chemical Industry  相似文献   

2.
This study was designed to determine whether the surface modifications of the various poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] copolymer scaffolds fabricated would enhance mouse fibroblast cells (L929) attachment and proliferation. The P(3HB‐co‐4HB) copolymer with a wide range of 4HB monomer composition (16–91 mol %) was synthesized by a local isolate Cupriavidus sp. USMAA1020 by employing the modified two‐stage cultivation and by varying the concentrations of 4HB precursors, namely γ‐butyrolactone and 1,4‐butanediol. Five different processing techniques were used in fabricating the P(3HB‐co‐4HB) copolymer scaffolds such as solvent casting, salt‐leaching, enzyme degradation, combining salt‐leaching with enzyme degradation, and electrospinning. The increase in 4HB composition lowered melting temperatures (Tm) but increased elongation to break. P(3HB‐co‐91 mol % 4HB) exhibited a melting point of 46°C and elongation to break of 380%. The atomic force analysis showed an increase in the average surface roughness as the 4HB monomer composition increased. The mouse fibroblasts (L929) cell attachment was found to increase with high 4HB monomer composition in copolymer scaffolds. These results illustrate the importance of a detailed characterization of surface architecture of scaffolds to provoke specific cellular responses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Biobased non‐fossil polyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 4.0 mol % 4‐hydroxybutyrate (4HB) was melt‐mixed with short glass fibers (SGF) via a co‐rotating twin‐screw extruder. The compositing conditions, average glass fiber length and distribution, thermal, crystallization, and mechanical properties of the P3/4HB/SGF composites were investigated. Calcium stearate, two kinds of paraffin wax and modified ethylene bis‐stearamide (TAF) were investigated as lubricants for the P3/4HB/SGF composites. It revealed that TAF is the most efficient lubricant of the P3/4HB/SGF composites. Coupling agents 2,2′‐(1,3‐phenylene)bis‐2‐oxazoline (1,3‐PBO) and pyromellitic dianhydride (PMDA) were used as end‐group crosslinkers to reduce the degradation of P3/4HB and increase the mechanical properties of the P3/4HB/SGF composites. It showed that 1,3‐PBO is the efficient coupling agent. The optimum condition of the P3/4HB/SGF composites is 1.5 phr TAF, 1.0 phr 1,3‐PBO, and 30 wt % glass fiber content. And the maximum of tensile strength, tensile modulus, and impact strength of the composites is 3.7, 6.6, 1.8 times of the neat P3/4HB polymer, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
BACKGROUND: Biopolymers produced by microbes are in demand as their biodegradable and biocompatible properties make them suitable for disposable products and for potential use as biomaterials for medical applications. The effective microbial production of copolyesters of 3‐hydroxybutyrate (3HB) and 4‐hydroxybutyrate(4HB) with high molar fractions of 4HB unit by a wild‐type Wautersia eutropha H16 was investigated in culture media containing 4‐hydroxybutyric acid (4HBA) and different carbon substrates in the presence of various α‐amino acids. RESULTS: The addition of carbon sources such as glucose, fructose and acetic acid to the culture medium containing 4HBA in the presence of α‐amino acids resulted in the production of random poly(3HB‐co‐4HB) with compositions of up to 77 mol% 4HB unit, but the yields of copolyesters with 60–77 mol% 4HB units were less than 15 wt% of dried cell weights. In contrast, when carbon sources such as propionic acid and butyric acid were used as the co‐substrates of 4HBA in the presence of α‐amino acids, poly(3HB‐co‐4HB) copolyesters with compositions of 72–86 mol% 4HB were produced at maximally 47.2 wt% of dried cell weight (11.3 g L?1) and the molar conversion yield of 4HBA to 4HB fraction in copolyesters was as high as 31.4 mol%. Further, poly(3HB‐co‐4HB) copolyesters with compositions of 93–96 mol% 4HB were isolated at up to 35.2 wt% of dried cell weights by fractionation of the above copolymers with chloroform/n‐hexane. CONCLUSION: The productivity of copolyesters with over 80 mol% 4HB fractions was as high as 0.146 g L?1 h?1 (3.51 g L?1 for 24 h) by flask batch cultivation. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
A poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB)‐degrading strain, Agrobacterium sp. DSGZ, was isolated from sewage by poly(3‐hydroxybutyrate) (PHB) mineral agar plates. A novel P3/4HB depolymerase with a molecular weight of 34 kDa was purified through a novel single‐step affinity chromatography method from the culture supernatant of the strain by using P3/4HB powder as a substrate. The purified depolymerase showed optimum activity at pH 7.0 and 50°C, and was stable at the pH range of 6.0 to 9.0 and temperature below 50°C. Enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetic acid (EDTA), hydrophobic reagents, and some metal ions. The depolymerase degraded poly(3‐hydroxybutyrate) (PHB), poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV), P3/4HB, and polycaprolactone (PCL), instead of polylactic acid (PLA) or poly(butylene succinate) (PBS). Meanwhile, the depolymerase showed high hydrolytic activity against short‐chain length esters, such as butyrate acid ester and caprylic acid ester. The main degradation products of the depolymerase were identified as hydroxybutyrate monomers and dimers, and the monomers were identified as 3‐hydroxybutyrate (3HB) monomers and 4‐hydroxybutyrate (4HB) monomers. The preparation procedure, crystallinity, and 4HB composition of the P3/4HB copolymer showed evident effect on degradation behavior, and change in crystallinity was the main factor affecting degradation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42805.  相似文献   

6.
Natural amorphous polymer poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3HB4HB) containing 41 mol % of 4HB was blended with poly(3‐hydroxybutyrate) (PHB) with an aim to improve the properties of PHB. The influence of P3HB4HB contents on thermal and mechanical properties of the blends was evaluated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, stress–strain measurement and thermo gravimetric analyzer. Miscibility of PHB/P3HB4HB blends was mainly decided by the contents of P3HB4HB. When P3HB4HB exceeded 50 wt %, the two polymer phases separated and showed immiscibility. The addition of P3HB4HB did not alter the crystallinity of PHB, yet it diluted the PHB crystalline phase as revealed by DSC studies. DSC and FTIR results showed that the overall crystallinity of the blends decreased remarkably with increasing of P3HB4HB contents. Decreased glass transition temperature and crystallinity imparted desired flexibility for the blends. The ductility of the blends increased progressively with increasing of P3HB4HB content. Thus, the PHB mechanical properties can be modulated by changing the blend composition. P3HB4HB did not significantly improve the thermal stability of PHB, yet it is possible to melt process PHB without much molecular weights loss via blending it with suitable amounts of P3HB4HB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
Tissue engineering involves the fabrication of three‐dimensional scaffolds to support cellular in‐growth and proliferation. Ideally, the scaffolds should be similar to the native extracellular matrix (ECM). Electrospun polymer nanofibrous scaffolds are appropriate candidates for ECM mimetic materials since they mimic the nanoscale properties of ECM. Electrospun polymer nanocomposites based on poly(lactide‐co‐glycolide) (PLGA)/poly(vinyl alcohol) (PVA) and organically modified montmorillonite (OMMT) were prepared by a solution intercalation technique followed by electrospinning. The morphology of fibrous scaffolds based on these nanocomposites was investigated using scanning electron microscopy. The scaffolds showed highly porous structure within the nanofibres of diameters ranging from 400 to 700 nm. X‐ray diffractometry gave evidence of good dispersion of the OMMT in the blends with exfoliated morphology. Measurements of the water uptake and water contact angle of the fibrous scaffolds indicated significant improvement in the hydrophilicity of the scaffolds. Evaluations of the mechanical properties and unrestricted somatic stem cell culture of the electrospun fibrous nanocomposite scaffolds revealed that the PLGA90/PVA10/1.5% OMMT and PLGA90/PVA10/3% OMMT samples are the most useful from the tissue engineering application viewpoint. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The apparent inability of a single biomaterial to meet all the requirements for tissue engineering scaffolds has led to continual research in novel engineered biomaterials. One method to provide new materials and fine‐tune their properties is via mixing materials. In this study, a biodegradable powder blend of poly(ε‐caprolactone) (PCL), polyglycolide (PGA), and poly(ethylene oxide) (PEO) was prepared and three‐dimensional interconnected porous PCL/PGA scaffolds were fabricated by combining cryomilling and compression molding/polymer leaching techniques. The resultant porous scaffolds exhibited co‐continuous morphologies with ~50% porosity. Mean pore sizes of 24 and 56 μm were achieved by varying milling time. The scaffolds displayed high mechanical properties and water uptake, in addition to a remarkably fast degradation rate. The results demonstrate the potential of this fabrication approach to obtain PCL/PGA blend scaffolds with interconnected porosity. In general, these results provide significant insight into an approach that will lead to the development of new composites and blends in scaffold manufacturing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42471.  相似文献   

9.
Biopolyesters poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) with an 11 mol % 4HB content [P(3HB‐co‐11%‐4HB)] and a 33 mol % 4HB content [P(3HB‐co‐33%‐4HB)] were blended by a solvent‐casting method. The thermal properties were investigated with differential scanning calorimetry. The single glass‐transition temperature of the blends revealed that the two components were miscible when the content of P(3HB‐co‐33%‐4HB) was less than 30% or more than 70 wt %. The blends, however, were immiscible when the P(3HB‐co‐33%‐4HB) content was between 30 and 70%. The miscibility of the blends was also confirmed by scanning electron microscopy morphology observation. In the crystallite structure study, X‐ray diffraction patterns demonstrated that the crystallites of the blends were mainly from poly(3‐hydroxybutyrate) units. With the addition of P(3HB‐co‐33%‐4HB), larger crystallites with lower crystallization degrees were induced. Isothermal crystallization was used to analyze the melting crystallization kinetics. The Avrami exponent was kept around 2; this indicated that the crystallization mode was not affected by the blending. The equilibrium melting temperature decreased from 144 to 140°C for the 80/20 and 70/30 blends P(3HB‐co‐11%‐4HB)/P(3HB‐co‐33%‐4HB). This hinted that the crystallization tendency decreased with a higher P(3HB‐co‐33%‐4HB) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
BACKGROUND: Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(3HB‐co‐3HV)] co‐polymer has immense potential in the field of environmental and biomedical sciences as biodegradable and biocompatible material. The present study examines a filamentous N2‐fixing cyanobacterium, Nostoc muscorum Agardh as a potent feedstock for P(3HB‐co‐3HV) co‐polymer production and characterization of co‐polymer film for commercial applications. RESULTS: Under photoautotrophic growth conditions, N. muscorum Agardh accumulated the homopolymer of poly‐β‐hydroxybutyrate (PHB), whereas synthesis of P(3HB‐co‐3HV) co‐polymer was detected under propionate‐ and valerate‐supplemented conditions. Exogenous carbons such as acetate, fructose and glucose supplementation with propionate/valerate was found highly stimulatory for the co‐polymer accumulation; the content reached 58–60% of dry cell weight (dcw) under P‐/N‐deficiencies with 0.4% acetate + 0.4% valerate supplementation, the highest value reported so far for P(3HB‐co‐3HV) co‐polymer‐producing cyanobacterial species. The material properties of the films were studied by mechanical tests, surface analysis and differential scanning calorimetry (DSC). CONCLUSION: N. muscorum Agardh, a photoautotrophic N2‐fixing cyanobacterium, emerged as a potent host for production of P(3HB‐co‐3HV) co‐polymer with polymer content 60% of dry cell weight. The material properties of the films were found to be comparable with that of the commercial polymer, thus advocating its potential applications in various fields. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
In bone tissue engineering, three‐dimensional (3D) scaffolds are often designed to have adequate modulus while taking into consideration the requirement for a highly porous network for cell seeding and tissue growth. This article presents the design optimization of 3D scaffolds made of poly(lactic‐co‐glycolic) acid (PLGA) and nanohydroxyapatite (nHA), produced by thermally induced phase separation (TIPS). Slow cooling at a rate of 1°C/min enabled a uniform temperature and produced porous scaffolds with a relatively uniform pore size. An I‐optimal design of experiments (DoE) with 18 experimental runs was used to relate four responses (scaffold thickness, density, porosity, and modulus) to three experimental factors, namely the TIPS temperature (?20, ?10, and 0°C), PLGA concentration (7%, 10%, and 13% w/v), and nHA content (0%, 15%, and 30% w/w). The response surface analysis using JMP® software predicted a temperature of ?18.3°C, a PLGA concentration of 10.3% w/v, and a nHA content of 30% w/w to achieve a thickness of 3 mm, a porosity of 83%, and a modulus of ~4 MPa. The set of validation scaffolds prepared using the predicted factor levels had a thickness of 3.05 ± 0.37 mm, a porosity of 86.8 ± 0.9%, and a modulus of 3.57 ± 2.28 MPa. POLYM. ENG. SCI., 59:1146–1157 2019. © 2019 Society of Plastics Engineers  相似文献   

12.
Novel biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/organoclay nanocomposites were prepared via solution casting. Exfoliated nanocomposite structure was confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) for the nanocomposites with low organoclay loadings (≤3 wt%), whereas the mixtures of exfoliated and unexfoliated organoclays were appeared in the nanocomposite with an organoclay content of 5 wt%. The organoclay fillers accelerated significantly the cold crystallization process of P(3HB‐co‐4HB) matrix. The thermal stability of the nanocomposites was in general better than that of pristine P(3HB‐co‐4HB). Considerable increase in tensile modulus was observed for the nanocomposites, especially at an organoclay content of 3 wt%. These results demonstrated that the nanocomposites improved the material properties of P(3HB‐co‐4HB). POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/silica nanocomposites were prepared by melt compounding. The effects of silica on the morphology, crystallization, thermal stability, mechanical properties, and biodegradability of P(3HB‐co‐4HB) were investigated. The nanoparticles showed a fine and homogeneous dispersion in the P(3HB‐co‐4HB) matrix for silica contents below 5 wt%, whereas some aggregates were detected with further increasing silica content. The addition of silica enhanced the crystallization of P(3HB‐co‐4HB) in the nanocomposites due to the heterogeneous nucleation effect of silica. However, the crystal structure of P(3HB‐co‐4HB) was not modified in the presence of silica. The thermal stability of P(3HB‐co‐4HB) was enhanced by the incorporation of silica. Silica was an effective reinforcing agent for P(3HB‐co‐4HB), and the modulus and tensile strength of the nanocomposites increased, whereas the elongation at break decreased with increasing silica loading. The exciting aspect of this work was that the rate of enzymatic degradation of P(3HB‐co‐4HB) was enhanced significantly after nanocomposites preparation. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
The miscibility and hydrogen bonding interaction in the poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(4‐vinyl phenol) [P(3HB‐co‐3HH)/PVPh] binary blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicate that P(3HB‐co‐3HH) with 20 mol % 3HH unit content is fully miscible with PVPh, and FTIR studies reveal the existence of hydrogen bonding interaction between the carbonyl groups of P(3HB‐co‐3HH) and the hydroxyl groups of PVPh. The effect of blending of PVPh on the mechanical properties of P(3HB‐co‐3HH) were studied by tensile testing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)(PHBV)/poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) blend films were prepared by solvent‐cast method. The nonisothermal crystallization results showed that PHBV and P3/4HB are miscible due to a single glass transition temperature (Tg), which is dependent on blend composition. The isothermal crystallization results demonstrate that the crystallization rate of PHBV becomes slower after adding amorphous P3/4HB with 19.2 mol% 4HB, which could be proved through depression of equilibrium melt point ($T_m^o$ ) from 183.7°C to 177.6°C. For pure PHBV and PHBV/P3/4HB (80/20) blend, the maximum crystallization rate appeared at 88°C and 84°C, respectively. FTIR analysis showed that PHBV/P3/4HB blend films would maintain the helical structure, similar to pure PHBV. Meanwhile, with increasing P3/4HB content, the inter‐ and intra‐interactions of PHBV and P3/4HB decrease gradually. Besides, a lower elastic modulus and a higher elongation at break were obtained, which show that the addition of P3/4HB would make the brittle PHBV to ductile materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3‐hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle‐to‐collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
To achieve novel polymer/bioceramic composite scaffolds for use in materials for bone tissue engineering, we prepared organic/inorganic hybrid scaffolds composed of biodegradable poly(ε‐caprolactone) (PCL) and hydroxyapatite (HA), which has excellent biocompatibility with hard tissues and high osteoconductivity and bioactivity. To improve the interactions between the scaffolds and osteoblasts, we focused on surface‐engineered, porous HA/PCL scaffolds that had HA molecules on their surfaces and within them because of the biochemical affinity between the biotin and avidin molecules. The surface modification of HA nanocrystals was performed with two different methods. Using Fourier transform infrared, X‐ray diffraction, and thermogravimetric analysis measurements, we found that surface‐modified HA nanocrystals prepared with an ethylene glycol mediated coupling method showed a higher degree of coupling (%) than those prepared via a direct coupling method. HA/PCL hybrid scaffolds with a well‐controlled porous architecture were fabricated with a gas‐blowing/particle‐leaching process. All HA/PCL scaffold samples exhibited approximately 80–85% porosity. As the HA concentration within the HA/PCL scaffolds increased, the porosity of the HA/PCL scaffolds gradually decreased. The homogeneous immobilization of biotin‐conjugated HA nanocrystals on a three‐dimensional, porous scaffold was observed with confocal microscopy. According to an in vitro cytotoxicity study, all scaffold samples exhibited greater than 80% cell viability, regardless of the HA/PCL composition or preparation method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Boron nitride (BN), talc, hydroxyapatite (HA), and zinc stearate (ZnSt) were investigated as nucleation agents (NA) for nonfossil‐based poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) plastics. Nonisothermal crystallization behaviors of the P3/4HB/NA blends were examined by DSC. It revealed that BN is the most efficient nucleation agent to promote the crystallization rate, however, but not the crystallization degree. The lasting crystallization of P3/4HB was also removed. The nucleation effect was strengthened with increase of BN content up to 1% and then slackened deeply when further BN was added. Isothermal crystallization analysis revealed that the addition of nucleation agent BN does not alter the crystal growth mode of P3/4HB, with maintaining the Avrami parameter n value around 2.40. Talc did enhance the crystallization of P3/4HB with however milder crystal growth rate. HA and ZnSt did not promote, but depressed the crystallization of P3/4HB plastics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Polyblend fibrous scaffolds in mass ratios of 100/0, 90/10, 80/20, and 70/30 from poly(L ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) for cartilage tissue engineering were prepared in three steps: gelation, solvent exchanging, and freeze‐drying. Effects of the blend ratio, the exchange medium, and the operating temperature on the morphology of scaffolds were investigated by SEM. PLLA/PCL scaffolds presented an ultrafine fibrous network with the addition of a “small block” structure. Smooth and regular fibrous networks were formed when ethanol was used as the exchange medium. Properties of the scaffolds, such as thermal and mechanical properties, were also studied. The results suggested that the compressive modulus declined as PCL amount increased. The incorporation of PCL effectively contributed to reduce the rigidity of PLLA. Bovine chondrocytes were seeded onto PLLA/PCL scaffold. Cells attached onto the fibrous network and their morphology was satisfactory. This polyblend fibrous scaffold will be a potential scaffold for cartilage tissue engineering. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1676–1684, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号