首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organophilic montmorillonite (OMMT) was synthesized by cationic exchange reaction of Na+‐MMT and vinyl benzyl triethyl ammonium chloride (VBTAC) as a reactive organic modifier in an aqueous solution. A series of styrene (St)/acrylic acid (AA)/OMMT nanocomposite hydrogel containing different wt% of OMMT was synthesized through in situ polymerization using γ‐ray. The samples were characterized using Fourier transform infrared (FTIR), X‐ray powder diffraction (XRD), and transmission electron microscope (TEM), whereas thermal stability was examined by thermogravimetric analysis (TGA). The adsorption capacity and rate for both Acid Green B (anionic) and Maxilon C.I. Basic (cationic) dye including adsorption kinetics and isotherm were investigated at 30°C. TEM measurements showed spherical nanosized particles of average diameter 30–40 nm and XRD suggested the formation of exfoliated nanocomposite. TGA measurements showed that the addition of OMMT did not enhance the thermal stability where the onset temperature of the degradation for all samples was around 125°C. The effect of some important parameters on dye adsorption such as solution pH, initial dye concentration, and contact time was investigated. The equilibrium data obtained in batch experiments were correlated to Langmuir and Freundlich isotherm equations. Results showed that the adsorption of Acid Green B fitted well to the Langmuir model while the adsorption pattern of Maxilon C.I. Basic followed the Freundlich isotherm, which suggests heterogeneity of the adsorption sites on the nanocomposite. POLYM. COMPOS., 35:2353–2364, 2014. © 2014 Society of Plastics Engineers  相似文献   

2.
A novel and inexpensive approach was adopted to develop a magnetic nanocomposite for the adsorption of cationic dye from an aqueous solution. This nanocomposite, which was based on a superparamagnetic iron oxide nanocore, was functionalized with a hydrophilic coating of polyaniline (PANI). The nanoparticle size, colloidal stability, surface chemistry, and magnetic properties were studied extensively by transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The polymeric functionalized magnetic nanocomposite had an average core size of 20–40 nm and a shell size of 6–10 nm. To evaluate the potential of such nanocomposites for dye adsorption, malachite green (MG) was exposed with different operational parameters, such as the pH, temperature, initial concentration of the dye, contact time, and reusability. The rate of the adsorption followed pseudo‐second‐order kinetics with the adsorption isotherm fit the Langmuir isotherm model well. The maximum adsorption capacity was 240 mg of MG/g of adsorbent. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40840.  相似文献   

3.
In this investigation, the porous structure of polyaniline/MgO (PANI/MgO) composites has been successfully synthesized by in‐situ oxidative polymerization method. The as‐prepared materials were characterized by Ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The obtained composites, for the first time, are used as an adsorbent for the removal of the sulfonated anionic dye reactive orange 16 (RO) from aqueous solution. The equilibrium adsorption isotherms of RO on the PANI/MgO composites were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data and maximum adsorption capacity was found to be 558.4 mg g?1. In addition, adsorption kinetics was followed by both pseudo‐first‐order and pseudo‐second‐order, but the latter model matches the results much better than the former one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40210.  相似文献   

4.
In this study, the removal of copper(II) and lead(II) ions from aqueous solutions by Starch-graft-acrylic acid/montmorillonite (S-g-AA/MMT) nanocomposite hydrogels was investigated. For this purpose, various factors affecting the removal of heavy metal ions, such as treatment time with the solution, initial pH of the solution, initial metal ion concentration, and MMT content were investigated. The metal ion removal capacities of copolymers increased with increasing pH, and pH 4 was found to be the optimal pH value for maximum metal removal capacity. Adsorption data of the nanocomposite hydrogels were modeled by the pseudo-second-order kinetic equation in order to investigate heavy metal ions adsorption mechanism. The observed affinity order in competitive removal of heavy metals was found Cu2+ > Pb2+. The Freundlich equations were used to fit the equilibrium isotherms. The Freundlich adsorption law was applicable to be adsorption of metal ions onto nanocomposite hydrogel.  相似文献   

5.
To further improve the adsorption capacity of chitosan (CTS), a series of novel chitosan/organo‐montmorillonite nanocomposites (CTS/OMMT) were synthesized and the adsorption abilities for Congo red (CR) investigated in this study. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the results indicated that an exfoliated nanostructure was formed in CTS/OMMT nanocomposites. Compared with the adsorption capacity of OMMT (192.4 mg g?1), CTS/OMMT with an amount of cetyltrimethylammonium bromide equal to 0.75 CEC of MMT and molar ratio of CTS to OMMT of 1:10 exhibited the higher adsorption capacity (290.8 mg g?1). The adsorption behaviours of OMMT and CTS/OMMT showed that the adsorption kinetics and isotherms were in good agreement with a pseudo‐second‐order equation and the Langmuir equation, respectively. The IR spectra revealed that a chemical interaction occurred between CTS/OMMT and CR. The adsorption capacity of CTS/OMMT nanocomposite was higher than that of other absorbents; this study suggested that the CTS/OMMT nanocomposite could be used as an adsorbent to remove CR dye from aqueous solution. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
In this study, a reactive fibrous adsorbent was prepared through the grafting of 4‐vinyl pyridine monomer onto poly(ethylene terephthalate) (PET) fibers for the removal of Congo red (CR) dye from an aqueous solution with the batch adsorption method. Effects of various parameters such as the grafting yield, pH, treatment time, and initial dye concentration on the amount of adsorption of the dye onto the reactive fibers were investigated. The effective pH was 4.0 for adsorption on grafted PET fibers. The sufficient time to attain equilibrium was 150 min. The maximum adsorption capacity of the reactive fibers for CR was 17.3 mg/g of fiber. The rates of adsorption conformed to pseudo‐second‐order kinetics with good correlation. The adsorption isotherm of CR fit a Langmuir‐type isotherm. The reactive fibers were stable and regenerable by acid and base without loss of activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Olad  Ali  Bastanian  Maryam  Aber  Soheil  Zebhi  Hamid 《Iranian Polymer Journal》2021,30(2):105-119

A simple, cheap, and environmentally friendly bio-conducting interpenetrated polymer blend network was prepared and introduced as a highly efficient system with suitable physical and mechanical properties for industrial removal of toxic Cr(VI) ions from aqueous solution. Carboxymethyl cellulose/polyaniline (CMC/PANI) interpenetrated network (IPN) blend was prepared by simple simultaneous ion-cross-linking of CMC and PANI chains using Al3+ cations. The CMC/PANI bio-conducting nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with an "energy dispersive X-ray spectroscopy" (SEM–EDX) technique. The CMC/PANI blend, ion-cross-linked by Al3+ cations, showed good stability and high surface area, proper for the removal of toxic Cr(VI) ions of the aqueous solution. Batch removal experiments were accomplished and the impression of effective variables including solution pH, initial concentration of Cr(VI) ions, contact time, and adsorbent dosage were checked and optimized. The outcome of our findings revealed that the removal of Cr(VI) ions by CMC/PANI nanocomposite IPN strongly depends on solution pH. The removal information was matched with the Langmuir adsorption isotherm model and the utmost monolayer adsorption capacity at pH 2 was 136.98 mg/g at 25 °C. The pseudo-second-order kinetics were operated and the thermodynamic parameters suggested spontaneous and exothermic nature of the adsorption process. Consequences indicated that CMC/PANI nanocomposite IPN could be an affective eco/environmentally friendly adsorbent for the removal of Cr(VI) ions from aqueous solutions.

  相似文献   

8.
The aim of this work is to study the thermodynamic and kinetic studies with regard to the adsorption of Acid Green 9 (AG9) on the most efficient resin, namely, acrylic weak base anion exchange resin with ethylenediamine‐functional groups (A1) selected from several anion exchange resins. The influence of the various experimental parameters such as, pH, initial dye concentration, contact time, temperature, and adsorbent dose was investigated by batch experiments. The extent of the dye adsorption increased with the decrease of the initial dye concentration and the increase of the contact time, temperature, and amount of the adsorbent. Adsorption process was quantitative and very fast at low concentrations of the dye. To investigate the mechanism of the adsorption and potential rate‐controlling steps, pseudo first‐ and second‐order, as well as intraparticle diffusion kinetic equations have been used. The adsorption kinetic of AG9 dye from aqueous solution onto A1 could be described by the pseudo second‐order reaction model. The obtained results are in agreement with the Langmuir and Freundlich models. In the optimum conditions established, an adsorption capacity of 500 mg textile dye (72% purity) g?1 adsorbent (at 293 K) was reached. Desorption experiments by batch and dynamic methods were performed using a solution of 0.05 mol L?1 NaOH. A series of 13 adsorption–desorption cycles were carried out by the dynamic method with a quantitative adsorption and the desorption efficiency higher than 95%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The feasibility of the use of jute fiber for the adsorption of azo dye from an aqueous solution was evaluated with batch and fixed‐bed column studies. The batch studies illustrated that dye uptake was highly dependent on different process variables, namely, the pH, initial dye concentration of the solution, adsorbent dosage, contact time, ionic strength, and temperature. The exothermic and spontaneous nature of adsorption was revealed from thermodynamic study. The equilibrium adsorption data were highly consistent with the Langmuir isotherm and yielded an R2 value of 0.999. Kinetic studies divulged that the adsorption followed a pseudo‐second‐order model with regard to the intraparticle diffusion. In the column studies, the total amount of adsorbed dye and the adsorption capacity decreased with increasing flow rate and increased with increasing bed height and initial dye concentration. Also, the breakthrough time and exhaustion time increased with increasing bed depth but decreased with increasing flow rate and influent dye concentration. The column performances were predicted by the application of the bed‐depth service time model and Thomas model to the experimental data. The virgin and dye‐adsorbed jute fiber was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy analyses. The investigation suggested that jute fiber could be applied as a promising low‐cost adsorbent for dye removal. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Batch lignocellulose-g-poly(acrylic acid)/montmorillonite (LNC-g-PAA/MMT) hydrogel nanocomposites were applied as adsorbents. The nanocomposites were characterized by FTIR, XRD, SEM, and TEM. The results showed that montmorillonite (MMT) could react with the monomers and change the structure of polymeric network of the traditional superabsorbent materials, an exfoliated structure was formed in the nanocomposites. The effect of process parameters such as MMT content (wt%), contact time (t), initial concentration of dye solution (C 0), adsorption temperature (T), and pH value (pH) of the dye solution for the removal of methylene blue (MB) from aqueous solution were also studied. The results showed that the adsorption capacity for MB increased with increasing contact time, initial dye concentration, and pH value, but decreased with increasing MMT content and temperature. The adsorption kinetics were better described by the pseudo-second-order equation, and their adsorption isotherms were better fitted for the langmuir equation. By introducing 20 wt% MMT into LNC-g-PAA polymeric network, the obtaining hydrogel composite showed the high adsorption capacity 1994.38 mg/g and economic advantage for MB. The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be regarded as a potential adsorbent for cationic dye MB removal in a wastewater treatment process.  相似文献   

11.
To enhance adsorption of organic dyes like malachite green (MG) onto polymeric absorbents, we prepared carbon nanotube (CNT) filled polyaniline (PANI) composites with large surface areas by simply using entangled CNTs as porous frameworks during PANI polymerization. Adsorption behavior of the CNT/PANI composites in MG solutions was experimentally investigated and theoretically analyzed. The CNT/PANI composites exhibit much higher equilibrium adsorption capacity of 13.95 mg g?1 at an initial MG concentration of 16 mg L?1, increasing by 15% than the neat PANI, which is mainly attributed to large surface areas and strong CNT‐PANI interactions of the composites. In addition, theoretical analyses indicate that the adsorption kinetics and the isothermal process of the composites can be well explained by using the Ho pseudosecond‐order model and the Langmuir model, respectively. In light of their high MG adsorption and easy operation, the CNT/PANI composites have great potential as high‐efficiency adsorbents for removal of dyes from wastewater. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Superadsorbent cellulose‐graft‐acrylic acid (C‐g‐AA) hydrogels were successfully prepared via free radical polymerization in phosphoric acid solution. Phosphoric acid solution provides a homogeneous reaction system. The C‐g‐AA hydrogels have a porous network inner structure with cellulose as the backbone. The introduced carboxyl groups enable the C‐g‐AA hydrogels with good swelling property (swelling ratio 7327%) and excellent MB adsorption capacity (equilibrium adsorption amount 2197 mg g?1). The dynamic swelling behaviors of the hydrogels were tested, water intake of hydrogels followed a non‐Fickian type diffusion. The effects of mole ratio of AA to cellulose, the pH of adsorption medium and the initial MB concentration on dye adsorption capacity of hydrogels were investigated. The adsorption isotherm and kinetics fit the Langmuir model and the Pseudo‐second‐order model well, respectively. Desorption was carried out in weak acid solution and 70% MB could be removed, suggesting the C‐g‐AA hydrogels had the potential for reuse. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
In situ adsorption of monomers on fibers plays a key role in fabricating highly conductive polyaniline (PANI)‐based textiles by two‐stage oxidation polymerization. Experiments were conducted in aniline monomer and hydrochloric acid solution with the variables such as contact time, initial concentration, and temperature, which can enhance the equilibrium adsorption capacity to aniline of poly(ethylene terephthalate) (PET) fibers. Equilibrium data were fit well by a Henry partition‐type isotherm equation. It was found that the kinetics of the adsorption of aniline onto PET fibers at different operating conditions was best described by the pseudo‐second‐order model. The rate parameters of the intraparticle diffusion model for adsorption were also evaluated and compared to identify the adsorption mechanisms. The monomer exhaustion increased with increasing the temperature. The value of electrical surface resistance of conductive textiles about 3.2 kΩ was obtained when the padder squeeze step was introduced, and the molar ratio of 0.6 between the oxidant concentration and the exhausted concentration of monomers at the adsorption equilibrium was applied. Scanning electron micrographs of PANI/PET composite surfaces were observed, conforming that smooth films were produced by surface polymerization of aniline monomers adsorbed previously on fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The work presents the synthesis of polyaniline functionalized montmorillonite (PANI/MMT) clay composites and evaluation of their performance as an adsorbent for the mitigation of toxic diethyl hexyl phthalate (DEHP) from water. The formation of composite was confirmed by different analytical techniques such as FTIR, zeta potential analysis, XRD, SEM, and AFM. The adsorption capacity of PANI/MMT was superior to MMT. DEHP followed partition mechanism on PANI/MMT whereas MMT favored surface adsorption mechanism. The performance of PANI/MMT for DEHP removal was unaffected by the change in pH of solution, change in salinity, and hardness contents in aqueous system and consecutive adsorption desorption cycles compared to MMT. Furthermore, both PANI/MMT and MMT exhibited greater adsorption capacities as compared to the previously published work and showed satisfactory performance in real water samples.  相似文献   

15.
A comprehensive feasibility study on adsorption of Cu(II) and a water‐soluble nitrazine yellow (NY) dye by chitosan‐montmorillonite (CS‐MMT) hydrogel as the biosorbent was investigated as a function of biosorbent dosage, initial concentration, pH, temperature, and the presence of salts. Box–Behnken methodology was applied to optimize the adsorption experiments. Maximum adsorption values were determined as 132.74 mg/g and 144.41 mg/g at pH = 5.0, for Cu(II) and NY dye, respectively. Equilibrium isotherms of Langmuir and Freundlich were analyzed by the non‐linear regression model. The equilibrium data were well described by Freundlich model and the adsorption process well fitted pseudo‐second order kinetics. The enthalpy change of adsorption (ΔH°) were calculated as ?3.78 kJ/mol and ?5.75 kJ/mol for Cu(II) and NY dye, respectively, indicating that the adsorption processes were exothermic. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43664.  相似文献   

16.
Graft copolymerization of acrylic acid (AA) onto starch was carried out with ceric ammonium nitrate as initiator under nitrogen atmosphere. The grafting percentages (GP%) of starch‐graft‐AA (St‐gr‐AA) copolymers were determined. When the AA molar concentrations were 0.3 and 0.5 mol/L, GP% of St‐gr‐AA copolymers were 10.5% (St‐gr‐AA‐1) and 14% (St‐gr‐AA‐2), respectively. St‐gr‐AA copolymers have been used for the adsorption of basic dye (Safranine T) from aqueous solutions. Effects of various parameters such as treatment time, initial pH of the solution (pH = 2–6), initial dye concentration (50– 500 mg/L), and GP% of starch graft copolymers were investigated.Basic dye removal capacities of the copolymers increase along with the augment of initial concentration of the adsorbate, GP% of the copolymers, and pH. The adsorption capacities for St‐gr‐AA‐1 and St‐gr‐AA‐2 reach 116.5 and 204 mg/g, respectively. Equilibrium adsorption data were obtained and fitted very well to Freundlich model. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Preparation of a biopolymer chitosan‐polypropylene imine (CS‐PPI) as a biocompatible adsorbent and its reactive textile dyes removal potential were performed. Chemical specifications of CS‐PPI were determined using Fourier transform infrared, 1H‐NMR, and 13C‐NMR. The surface morphology of the CS‐PPI surface was characterized by scanning electron microscopy. Results confirmed that the linkages between the NH2 groups of PPI dendrimer and carboxylic groups of modified Chitosan were accomplished chemically. Two textile reactive dyes, reactive black 5 (RB5) and reactive red 198 (RR198), were used as model compounds. A response surface methodology was applied to estimate the simple and combined effects of the operating variables, including pH, dye concentration, time contact, and temperature. Under the optimal values of process parameters, the dye removal performance of 97 and 99% was achieved for RB5 and RR198, respectively. Furthermore, the isotherm and kinetic models of dyes adsorption were performed. Adsorption data represented that both examined dye followed the Langmuir isotherm. The adsorption kinetics of both reactive dyes were satisfied by pseudo‐second order equation. Based on this study, CS‐PPI due to having high adsorption capacity (6250 mg/g for RB5 and 5882.35 mg/g for RR198), biocompatibility and ecofriendly properties might be a suitable adsorbent for removal of reactive dyes from colored solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Polyacrylamide/sodium alginate modified montmorillonite (PAM/SA‐MMT) superabsorbent composites were synthesized by free‐radical polymerization under normal atmospheric conditions. They were characterized by X‐ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR). Their water absorbency and methylene blue (MB) adsorption behaviors were studied. Compared with PAM/MMT composites, PAM/SA‐MMT composites demonstrated greater water absorbency (863 g g?1 in distilled water and 101 g g?1 in 0.9 wt % NaCl solution) and higher adsorption capacity of 2639 mg g?1 for MB. The adsorption behaviors of the composites showed that the isotherms and adsorption kinetics were in good agreement with the Langmuir equation and pseudo‐second‐order equation, respectively. FTIR analysis suggested that the MB adsorption of PAM/SA‐MMT composites via a mechanism combined electrostatic, H‐bonding and hydrophobic interaction. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40013.  相似文献   

19.
20.
《分离科学与技术》2012,47(9):1370-1381
Erythrosine B is extensively used in the textile and food industry. It is reported to be a neurotoxicant and is carcinogenic in nature. It can induce DNA damage in the gastrointestinal organs even at low doses. In this study, adsorption efficiency of montmorillonite (MMT) has been investigated for the removal of erythrosine B (EB) from aqueous solution. The batch adsorption model was developed to predict the equilibrium adsorption capacity with respect to the pH of the dye solution, contact time, initial dye concentration, and adsorbent dosage. A maximum monolayer adsorption capacity of 578.03 mg/g was obtained at the original pH (7.5) of the aqueous dye solution within 5 minutes of contact time. It was found that the Langmuir adsorption isotherm yielded the most favorable representation of the adsorption behavior of EB. The dye was found to be chemisorbed on the adsorbent as confirmed by the FTIR spectral analysis. Although anionic in nature, the dye was found to be intercalated into the clay interlayers as suggested by the X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号