首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrated polyacrylonitrile (PAN) solutions were prepared with 1‐butyl‐3‐methylimidazolium chloride ([BMIM]Cl) as solvent by static state, stirring, and kneading. The steady and oscillatory shear tests were carried out to investigate the viscoelastic behaviors of the PAN/[BMIM]Cl solutions by rotational rheometer. It was found that the zero shear‐rate viscosity and relaxation time of the solution prepared by kneading were lowest and the non‐Newtonian index was largest among the solution. During kneading, the gelation temperature of the viscous and homogenous solution was at the lowest temperature 22.7°C among the all three solutions. Only the solutions prepared by stirring and kneading could be spun by dry‐jet wet spinning technology. The fiber processed with the solution prepared by kneading could be drawn with a higher draw ratio, showing the larger draw ability. The supramolecular structure and properties of the fibers were studied by synchrotron wide‐angle X‐ray diffraction (WAXD) technologies, dynamic mechanical analysis (DMA), and mechanical tests. All the results showed that the kneading is an efficient method for PAN fiber spinning with [BMIM]Cl as solvent. It lead to the investigation of the methods of preparation of PAN solution in [BMIM]Cl, which affect the homogeneity of the solutions and hence the resulting characteristics of PAN fibers. POLYM. ENG. SCI., 55:558–564, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
The coagulation dynamics of acrylic polymer (PAN) with 1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl as solvent for PAN and H2O as nonsolvent was investigated in detail. On the basis of Fick's second law of diffusion, a mass‐transfer model of [BMIM]Cl from concentrated PAN/[BMIM]Cl solution was established as verified with the experimental data. The established model has a good fit with the experimental data and the diffusion coefficient D of [BMIM]Cl was calculated according to the model. The diffusion coefficient D decreased a little when the concentration of solution increased. As increasing the coagulation bath concentration, the diffusion coefficient D initially increased and then decreased, reaching a maximum of 5 wt% in the coagulation bath. The diffusion coefficient D decreased with the coagulation bath temperature. From the diffusion coefficient and the structure of the coagulated filament, it can be concluded that the diffusion rate of [BMIM]Cl from PAN concentrate solutions is relatively slow, which is prospective to prepare uniform‐structure fibers. POLYM. ENG. SCI., 48:184–190, 2008. © 2007 Society of Plastics Engineers  相似文献   

3.
In this study, we systematically explored the dependence of the homogeneity and sol–gel transition temperatures of various polyacrylonitrile (PAN) solutions on the solvent solubility parameters. The Cole–Cole slope was used to characterize the solution homogeneity, and we found that the PAN/dimethyl sulfoxide (DMSO) solution, which had a smaller Hansen solubility parameter distance between the solvent and PAN, showed better solution homogeneity than the PAN/dimethylformamide and PAN/dimethylacetamide solutions. Additionally, we found that both heating and cooling were able to cause the gelation of the PAN solution, although their mechanisms were totally different. The gelation caused by heating was ascribed to the nitrile–nitrile coupling of PAN chains, whereas the gelation caused by cooling was due to the solvent bridge effect. In this case, DMSO, which had the highest polarity and the strongest interactions with nitrile groups, caused the highest gelation temperature of the PAN solution during cooling. The gelation temperature of the PAN solution exhibits dependence on its solvent polarity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45405.  相似文献   

4.
Rheological properties of cotton pulp dissolved in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) solutions were characterized using an advanced rheometer. The complex viscosity, dynamic modulus, and shear viscosity at different temperature were studied. In the steady shear measurements, all the solutions show a shear‐thinning behavior at high shear rates. The complex viscosity as a function of frequency was fitted by extended Carreau–Yasuda model. In all cotton pulp/[Bmim]Cl solutions, the complex dynamic viscosity (η*) and steady shear viscosity (ηa) followed the Cox–Merz rule only at lower frequency. The effects of tested temperature on viscosity and viscoelastic behavior of the solutions were also investigated. The value of activation energy for the dissolution of cotton pulp in ionic liquids was 65.28 kJ/mol at the concentration of 10 wt% and was comparable with the ones for the dissolution of cellulose in NMMO. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
The rheological properties of high concentrated wood pulp cellulose 1‐allyl‐3‐methy‐limidazolium Chloride ([Amim]Cl) solutions were investigated by using steady shear and dynamic viscoelastic measurement in a large range of concentrations (10–25 wt %). The measurement reveals that cellulose may slightly degrade at 110°C in [Amim]Cl and the Cox–Merz rule is valid for 10 wt % cellulose solution. All of the cellulose solutions showed a shear thinning behavior over the shear rate at temperature from 80 to 120°C. The zero shear viscosity (ηo) was obtained by using the simplified Cross model to fit experimental data. The ηo values were used for detailed viscosity‐concentration and activation energy analysis. The exponent in the viscosity‐concentration power law was found to be 3.63 at 80°C, which is comparable with cellulose dissolved in other solvents, and to be 5.14 at 120°C. The activation energy of the cellulose solution dropped from 70.41 to 30.54 kJ/mol with an increase of concentration from 10 to 25 wt %. The effects of temperature and concentration on the storage modulus (G′), the loss modulus (G″) and the first normal stress difference (N1) were also analyzed in this study. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
One of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was chosen to prepare the concentrated solutions of Polyacrylonitrile (PAN). The rheological behaviors of the solutions were measured with rotational rheometry under different conditions, including temperatures, concentration, and molecular weight of PAN. The solutions exhibited shear-thinning behaviors, similar to that of PAN/DMF solutions. The viscosities decreased with the increasing of shear rates. However, the viscosity decreased sharply at high shear rates when the concentration was up to 16wt%. The dependence of the viscosity on temperature was analyzed through the determination of the apparent activation energy. Unusually, the viscosity of solutions of higher concentration is lower than that of lower concentration. Similarly, the viscosity of low molecular weight PAN was higher than high molecular weight PAN at high shear rates. The dynamic rheological measurement indicates the loss modulus is much higher than storage modulus. The trend of complex viscosity is similar with the result of static rheological measurement. The interaction between PAN and ionic liquid [BMIM]Cl was discussed.  相似文献   

7.
Rheological behavior of concentrated acrylic polymer/1-butyl-3-methylimidazolium tetrafluoroborate (PAN/[BMIM]BF4) solutions, which were prepared by the radical copolymerization of acrylonitrile (AN) and methylate (MA) in ionic liquid, is reported. The effect of copolymerization conditions on the rheological behavior of the solutions is discussed in detail. The shear viscosity and structural viscosity index, Δη, increases while the non-Newtonian index, n, decreases with increasing polymer concentration as the copolymerization time increases, and decreases with decreasing initiator concentration. It is shown that the rheological behavior of PAN/[BMIM]BF4 can be directly controlled by varying copolymerization conditions.  相似文献   

8.
The effects of solution composition and temperature on the viscoelasticity of concentrated polyacrylonitrile (PAN) solutions were studied using a variety of rheological measurements, such as steady‐state shearing, dynamic stress sweep and transient rheological tests. The first normal stress difference N1 and the shear stress τ were found to increase with decreasing temperature and increasing PAN concentration and water content in the solutions. The crossover point of N1 and τ, denoting the equal contribution of viscosity and elasticity to the viscoelasticity of the solutions, moved to lower shear rates at lower temperature, higher PAN concentration and higher water content. The values of the relaxation time (λ) were larger at 70 °C than at 40 °C. In addition, the changes of λ with PAN concentration and water content were different at the two temperatures, ascribed to the different states of the solutions. The PAN solutions were in the linear viscoelastic regime in the temperature range 40–70 °C when the shear stress was below 300 Pa. The creep compliance recovery rate decreased with increasing temperature, but increased with increasing PAN concentration and water content. Thixotropic tests showed that the thixotropy of the solutions was also affected by the solution composition and temperature. Gelation was found to influence the way the solution composition and temperature affected the viscoelastic properties of the PAN solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
A new dissolving process (two‐step dissolving process), that is, cellulose was first swelled to the maximum in aqueous 1‐butyl‐3‐methylimidazolium chloride ([BMIM]Cl) solution, and then dissolved by stirring under vacuum to remove excessive water, was developed to prepare the cellulose/[BMIM]Cl spinning dope with high quality. The results showed that the initial water contents in [BMIM]Cl have great influence on the swelling and dissolution of cellulose, and the suitable swelling range of aqueous [BMIM]Cl solution, in which cellulose can be swollen but not dissolved, was 2–5% water content. In this range, the higher water content in aqueous [BMIM]Cl solution, the more swelling time would be taken for cellulose to reach the maximal swelling ratio. Based on these results, cellulose/[BMIM]Cl spinning dopes were prepared by using two‐step dissolving process. In the range of our experiments, cellulose spinning dopes prepared by the two‐step dissolving process had better properties, such as fewer particles, lower apparent viscosity, and higher uniformity, compared with the direct dissolving process. By using this new dissolving process, the spinning performance of cellulose/[BMIM]Cl dopes was improved, and the mechanical properties of regenerated cellulose fibers were better than those prepared by the direct dissolving process. Therefore, it is a good way to prepare cellulose/[BMIM]Cl spinning dopes by using the new dissolving process. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
In this study, Mg(OH)2 (MH) was first modified by 1‐n‐tetradecyl‐3‐carboxymethyl imidazolium chloride ([C14cim]Cl), an imidazolium ionic liquid, and then the modified MH ([C14cim]Cl‐MH) was incorporated into linear low‐density polyethylene (LLDPE) by melt‐mixing to obtain the LLDPE/[C14cim]Cl‐MH composites. The interaction between [C14cim]Cl and MH was investigated by Fourier transform infrared spectroscopy (FT‐IR). The thermal decompostion behaviors of the LLDPE/[C14cim]Cl‐MH composites were characterized by thermogravimetric analysis (TGA). The flame retardance, tensile and Izod Impact properties of the LLDPE/[C14cim]Cl‐MH composites were tested. For comparison, the LLDPE/MH composites and LLDPE/SA‐MH composites (SA‐MH is stearic acid) were prepared and their properties were studied in the same way. It was found that [C14cim]Cl interacted with MH via chemical bonding, and served as an efficient lubricant and compatibilizer for MH and LLDPE, leading to great improvements of processability and mechanical properties of the LLDPE/[C14cim]Cl‐MH composites. The LLDPE/[C14cim]Cl‐MH composites also showed a remarkably promoted char formation and effectively eliminated melt drips, thus endowing the composites with sufficiently high flame retardancy. POLYM. ENG. SCI., © 2011 Society of Plastics Engineers  相似文献   

11.
Linear and nonlinear rheological properties of poly(vinyl chloride) (PVC)‐poly(n‐butyl acrylate)‐PVC triblocks of different compositions, obtained by single electron transfer‐degenerative chain transfer living radical polymerization, are investigated, focusing on the effect of crystallites. Dynamic mechanical thermal analysis results show the existence of two glass transition temperatures, denoting microphase segregation. However, rather than phase separation, it is the presence of two types of crystals that melt at Tm1 = 127 ± 0.8°C and Tm2 = 185 ± 2°C, respectively, the factor that determines the rheological response of the copolymers. To the difference with PVC homopolymers, extrusion flow measurements at very low temperatures (T = 100°C) are possible with the copolymers. A change in the viscosity‐temperature dependence is observed below and above the lowest melting temperature. Notwithstanding the microphase separation and the presence of crystallites, experiments carried out in conditions similar to industrial processing reveal a remarkable viscosity reduction for our copolymers with respect to PVC obtained by single electron transfer‐degenerative chain transfer living radical polymerization, conventional PVC, and PVC/[diethyl‐(2‐ethylhexyl) phthalate] compounds. Extrudates free of surface instabilities are obtained at low extrusion temperatures, such as 90–100°C. J. VINYL ADDIT. TECHNOL., 21:24–32, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
In the present study, regenerated cellulose membrane with “imprinted morphology” and low crystallinity was fabricated from the crystal cellulose/[Bmim]Cl solution. Spherulites of 1‐butyl‐3‐methilimidazolium chloride ([Bmim]Cl) and cellulose/[Bmim]Cl solution were observed using polarized optical microscopy under certain condition. The fabricated cellulose membranes presented some particular characteristics compared with the membrane prepared from traditional cellulose/[Bmim]Cl solution. All the fabricated membranes were characterized by optical microscope, Wide‐angle X‐ray diffraction (WAXD), thermo‐gravimetric analysis, and mechanical testing. The images showed that the resulting membranes prepared from crystal cellulose/[Bmim]Cl solution were “imprinted” with patterns which originated from the crystalline structure of [Bmim]Cl. The results of WAXD showed that the obtained cellulose membrane exhibited low diffraction peaks and crystallinity of approximately 24.57%. Furthermore, the low crystallinity led to the low mechanical property (27.5 MPa), thermal stability (315.4 °C), and high moisture regain (9.5%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43798.  相似文献   

13.
The rheological behavior and the dynamic mechanical properties of syndiotactic 1,2‐polybutadiene (sPB) were investigated by a rotational rheometer (MCR‐300) and a dynamic mechanical analyzer (DMA‐242C). Rheological behavior of sPB‐830, a sPB with crystalline degree of 20.1% and syndiotactic content of 65.1%, showed that storage modulus (G′) and loss modulus (G″) decreased, and the zero shear viscosity (η0) decreased slightly with increasing temperature when measuring temperatures were lower than 160°C. However, G′ and G″ increased at the end region of relaxation curves with increasing temperature and η0 increased with increasing temperature as the measuring temperatures were higher than 160°C. Furthermore, critical crosslinked reaction temperature was detected at about 160°C for sPB‐830. The crosslinked reaction was not detected when test temperature was lower than 150°C for measuring the dynamic mechanical properties of sample. The relationship between processing temperature and crosslinked reaction was proposed for the sPB‐830 sample. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
The formation of a series of semiinterpenetrating network (SIPN) hydrogels made by free‐radical copolymerization of N‐isopropylacrylamide (NIPA) and 2‐acrylamido‐2‐methylpropanesulphonic acid (AMPS) with varying comonomer mole ratios, crosslinked with N,N′‐methylene‐bisacrylamide (MBAA) in the presence of poly(ethylene glycol) (PEG) with average molecular weight 6,000 g mol?1 was studied via determination of complex viscosity, η*, using plate–plate rheometry. The isothermal time dependence of η* at various temperatures or the variation of η* with temperature of pregel solutions was utilized to detect the onset of gelation. The SIPN systems were compared with the corresponding gels made under the same conditions in the absence of PEG. The copolymer mainchain composition has a major effect on the time or temperature for onset of gelation and in particular gelation appears to be inhibited to some extent by MBAA when the AMPS/NIPA mole ratio in the pregel solution exceeds 0.5. The presence or absence of PEG in pregel solutions has a lesser effect on gelation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2083–2087, 2004  相似文献   

15.
The elongational rheology of solutions of cellulose in the ionic liquid solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was measured at 80, 90, and 100°C; 8, 10, and 12 wt% cellulose; Hencky strains 5, 6, 7; and strain rates from 1 to 100 s?1. Master curves were generated by shifting the elongational viscosity curves with respect to temperature and Hencky strain. Also, general master curves were generated by simultaneously shifting with respect to both temperatures and Hencky strain. From the Arrhenius plots of the temperature shift factors, the activation energy for elongational flow was determined. The elongational rheology of these solutions was elongational strain rate thinning similar to that of their shear behavior and polymer melts and they were also strain hardening. Both effects and the viscosity increased with cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
分析了经表面功能化的MWCNTs(多壁碳纳米管)在纤维素/[BMIM]Cl(1-丁基-3-甲基咪唑氯盐)体系中的分散稳定性,探讨了MWCNTs/纤维素/[BMIM]Cl溶液的流变行为,并通过干湿法制备了不同MWCNTs含量的离子液体法纤维素纤维,对其力学性能和表面形态结构进行了研究。结果表明:MWCNTs/纤维素/[BMIM]Cl溶液为切力变稀流体。随着溶液中MWCNTs添加量的增加,溶液表观黏度先增大后减小;适量的MWCNTs可以均匀分散在纤维素/[BMIM]Cl溶液体系中并具有良好的可纺性,所制得的MWCNTs/纤维素纤维表面较光滑且力学性能明显改善。其中,含1%MWCNTs的纤维素纤维的初始模量和断裂强度较高,分别比未添加MWCNTs的纤维提高66.7%和22.7%。  相似文献   

17.
Epoxy–imide resins were obtained by curing Araldite GY 250 (diglycidyl ether of bisphenol‐A and epichlorohydrin; difunctional) and Araldite EPN 1138 (Novolac–epoxy resin; polyfunctional) with N‐(4‐ and 3‐carboxyphenyl)trimellitimides derived from 4‐ and 3‐aminobenzoic acids and trimellitic anhydride. The adhesive lap shear strength of epoxy–imide systems at room temperature and at 100, 125, and 150°C was determined on stainless‐steel substrates. Araldite GY 250‐based systems give a room‐temperature adhesive lap shear strength of about 23 MPa and 49–56% of the room‐temperature adhesive strength is retained at 150°C. Araldite EPN 1138‐based systems give a room‐temperature adhesive lap shear strength of 16–19 MPa and 100% retention of room‐temperature adhesive strength is observed at 150°C. Glass transition temperatures of the Araldite GY 250‐based systems are in the range of 132–139°C and those of the Araldite EPN 1138‐based systems are in the range of 158–170°C. All these systems are thermally stable up to 360°C. The char residues of Araldite GY 250‐ and Araldite EPN 1138‐based systems are in the range of 22–26% and 41–42% at 900°C, respectively. Araldite EPN 1138‐based systems show a higher retention of adhesive strength at 150°C and have higher thermal stability and Tg when compared to Araldite GY 250‐based systems. This has been attributed to the high crosslinking possible with Araldite EPN 1138‐based systems arising due to the polyfunctional nature of Araldite EPN 1138. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1729–1736, 2000  相似文献   

18.
1‐Butyl‐3‐methylimidazolium chloride ([BMIM]Cl) was used as a solvent for cellulose, the rheological behavior of the cellulose/[BMIM]Cl solution was studied, and the fibers were spun with a dry‐jet–wet‐spinning process. In addition, the structure and properties of the prepared cellulose fibers were investigated and compared with those of lyocell fibers. The results showed that the cellulose/[BMIM]Cl solution was a typical shear‐thinning fluid, and the temperature had little influence on the apparent viscosity of the solution when the shear rate was higher than 100 s?1. In addition, the prepared fibers had a cellulose II crystal structure just like that of lyocell fibers, and the orientation and crystallinity of the fibers increased with the draw ratio increasing, so the mechanical properties of the fibers improved. Fibers with a tenacity of 4.28cN/dtex and a modulus of 56.8 cN/dtex were prepared. Moreover, the fibers had a smooth surface as well as a round and compact structure, and the dyeing and antifibrillation properties of the fibers were similar to those of lyocell fibers; however, the color of these dyed fibers was brighter than that of lyocell fibers. Therefore, these fibers could be a new kind of environmentally friendly cellulose fiber following lyocell fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
纤维素原料/离子液体溶液体系流变性能的研究   总被引:5,自引:0,他引:5  
利用NDJ-1型旋转粘度计分别对木浆/离子液体氯化1-丁基-3-甲基咪唑([BMIM]Cl)溶液体系和水洗汽爆麦草/[BMIM]Cl溶液体系的流变性能进行了研究。考察了转子转速、温度、纤维素浓度及添加剂等对溶液粘度的影响。结果表明,两种溶液体系的流动活化能均较低,分别为42 kJ/mol和47 kJ/mol,其表观粘度随温度升高而降低;纤维素浓度和浆粕聚合度的增加都可使溶液的粘度增加。进一步研究了不同添加剂对粘度的影响,发现二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAC)和1,4-二氧六环的加入都能降低溶液的粘度,但以DMSO的效果最佳。  相似文献   

20.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号