首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrathin films of poly(vinylidene fluoride‐trifluoroethylene) copolymer [P(VDF‐TrFE), with a content (mol %) ratio of 50/50 VDF/TrFE] were fabricated on silicon wafers covered with platinum by a spin‐coating technique, ranging in thickness from 20 nm to 1 μm. The effect of thickness on dielectric properties and polarization behavior was investigated. A critical thickness was found to be about 0.1 μm. An abrupt drop of dielectric constant was observed, although there is no significant change in dielectric loss at this thickness. Square and symmetric hysteresis loops were obtained in films thicker than 0.1 μm. However, for films thinner than 0.1 μm, fewer square hysteresis loops were observed. SEM and X‐ray results demonstrate that the effect of thickness on dielectric and ferroelectric properties could be explained by the changes of crystal structure in these films. In addition, the effects of irradiation on dielectric property and polarization response for ultrathin P(VDF‐TrFE) films were also presented. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2259–2266, 2001  相似文献   

2.
We investigated the effects of annealing temperature and vacuum treatment on the crystallinity and ferroelectric properties of solution‐casted poly(vinylidenefluoride‐co‐trifluoroethylene), P(VDF‐TrFE), thick films. We varied the annealing temperature from 70°C to 150°C and achieved high‐quality ferroelectric thick films annealed at 130°C. Ferroelectric domains and their properties were confirmed using X‐ray diffraction, Fourier transform infrared spectroscopy with attenuated total reflection mode and ferroelectric/piezoelectric measurement systems. Drying and/or annealing in the vacuum allowed for the improvement of crystallinity and ferroelectric/piezoelectric properties. Importantly, the piezoelectric coefficient, d33, of our optimal P(VDF‐TrFE) films after sufficient poling treatment was 36 pC/N and our P(VDF‐TrFE) power generator produced an output voltage of ~6 V under periodic bending and unbending motions. POLYM. ENG. SCI., 54:466–471, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
The influence of the processing parameters on the electrocaloric effect of a ferroelectric polymer was investigated. A normal ferroelectric poly(vinylidene fluoride–trifluoroethylene) [P(VDF–TrFE)] (55:45 mol %) copolymer was selected and fabricated. The crystallinity, microstructure, mechanical properties, and refrigeration capability of this copolymer were characterized with X‐ray diffraction, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, respectively. We found that N,N‐dimethylformamide was the most suitable solvent for enhancing the crystallinity of the copolymer film. In combination with the consideration of the effect of the processing parameters on the microstructure of copolymer, a lower spin‐coating temperature and annealing temperature at 140 °C gave the highest crystallinity and uniform microstructure without defects. The highest temperature change was 12.13 °C when the copolymer film was operated at 110 °C under a higher electric field. The direct measurement of the refrigeration was carried out with an IR thermometer. We found that the P(VDF–TrFE) copolymer film had a considerable refrigeration capability, which increased as the applied electric field strength increased before electric breakdown. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44413.  相似文献   

4.
This work emphasizes the use of vinylidene fluoride and trifluoroethylene copolymer P(VDF‐TrFE) as a pyroelectric sensor. The pyroelectric and dielectric properties of the copolymer have been investigated in the temperature interval 150–350 K. The samples were prepared by using a spin‐coating technique with 70/30 mol% VDF/TrFE copolymer. The final film thickness of the samples, which is mainly determined by the concentration of the copolymer, spinning rate and spin time, was measured with a surface profiler. The samples were annealed at 150 °C for 10 min to improve the crystallinity of the copolymer. The crystallinity of the annealed and non‐annealed samples was compared by IR spectroscopy. The most effective process by which to improve the pyroelectric response of the material is to pole the sample with huge poling field‐strengths at elevated temperatures. Both pyroelectric and dielectric activities of the samples were measured after each successful poling process. It was observed that while the pyroelectric activity of the material increases, the dielectric activity decreases, so the figure‐of‐merit of the material, which shows the sensor capability of the material, was increased by a significant amount. It was found that the pyroelectric coefficient of VDF/TrFE (70/30 mol%) copolymer is 68.7 µC m?2 K?1 at 300 K. © 2001 Society of Chemical Industry  相似文献   

5.
Copolymers of polyvinylidene fluoride and trifluorethylene [P(VDF‐TrFE)] have potential applications in wearable and implantable electromechanical devices since they are mechanically flexible, and biocompatible. A tailored electric cyclic process is employed to enhance both electrical and mechanical properties in P(VDF‐TrFE) 65/35 mol % copolymer films. The films are subjected to lower and higher field magnitude electric cycling successively. For electrical properties, enhancement in remnant polarization, dielectric and piezoelectric constants occurs. From mechanical point of view, strengthening in the fracture strength happens. Wide‐angle X‐ray diffraction techniques examine changes of the orientation of the molecular chains, grain size, and crystallinity after electric cycling for the copolymer films. Scanning electron microscopy reveals evolutions of the microstructure, including rod‐like textures and fractography of the films. The results indicate that electric cycling causes the molecular chains to orient gradually along the direction perpendicular to the applied electric field. Consequently, an enhancement of 12.2% and 45% is realized for the remnant polarization and fracture strength, respectively for P(VDF‐TrFE) 65/35 copolymer film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45926.  相似文献   

6.
The poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride‐trifluoroethylene), P(VDF‐TrFE), are of great scientific and technological interest due to their ferro, pyro, and piezelectrical properties besides chemical and thermal stability. Recently, their biocompatibility has been shown as well. Therefore, considering all this potentiality, self‐standing films of PVDF and P(VDF‐TrFE) containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends. This process allows one to discard the necessity of using solvents to dissolve either PVDF or P(VDF‐TrFE), which are toxic to human. The films were structurally characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction, density, melt flow index, hardness, and thermal conductivity. The results showed that the polymers do not interact chemically with the additives leading to the formation of blends as physical mixtures where the additives are well dispersed within the blends at micrometer level. However, it was observed that the adhesion of the starch is better in the case of blends with P(VDF‐TrFE). Besides, the crystalline structures of the α‐PVDF and ferroelectric P(VDF‐TrFE) are kept in the blends. The density, hardness, melt flow index, and thermal conductivity values of the blends followed what should be expected from physical mixtures. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
With a spin‐coating technique, ferroelectric thin films of poly(vinylidene fluoride–trifluoroethylene) copolymer [P(VDF–TrFE; with a content (mol %) ratio of 68/32 vinylidene fluoride/trifluoroethylene] were fabricated on silicon wafers covered with platinum and were doped with a nucleation agent, diethyl phthalate (DEP). The remnant polarization of copolymer thin films increased 70% after doping with DEP, and the coercive field was reduced, which is highly desirable in bistable memory devices. The dielectric constant of thin films also increased after doping. However, the effect of doping on the ferroelectric response was not remarkable in freestanding copolymer films. The results demonstrated that the ferroelectric dipole orientation in P(VDF–TrFE) thin films was significantly enhanced by the presence of DEP because the crystallinity of thin films decreased after doping, as revealed by X‐ray results. The dopant DEP acted as both a nucleation agent during the crystallization process and a plasticizer in the noncrystalline regions, which greatly enhanced the dipole orientation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1416–1419, 2003  相似文献   

8.
Electroactive polymers are smart materials that respond to electrical stimulation by changing their shape and size. The objective of this study is to investigate the applicability of the poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) copolymer in sensors or actuators in an in vivo environment. The basic mechanical properties of P(VDF‐TrFE) thin films were estimated by carrying out tensile and creep tests using specimens submerged in water at 30°C for a few weeks. Furthermore, X‐ray diffraction analysis was employed to observe the micro‐structural changes in the P(VDF‐TrFE) films due to water absorption wherein water intercalated in the interstitial sites between the chains of the P(VDF‐TrFE) films. Consequently, the mechanical properties of the P(VDF‐TrFE) films were enhanced due to water absorption. POLYM. ENG. SCI., 54:2654–2659, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Facile microscale patterning of ferroelectric P(VDF‐TrFE) thin films are presented. Simple spin‐coating of the polymer solution on a patterned stamp has led to a variety of features due to the topographic dewetting. The effects of important experimental parameters, such as polymer solution concentration, spin speed, and stamp geometry, are systematically examined and the results are presented as morphological phase diagrams. Further, the dewetted cylindrical lines on the stamp protrusions are found to undergo Rayleigh‐Plateau instability, which leads to the break‐up of lines into dots in a row. The various pattern features formed on structured stamp has then been successfully transfer‐printed onto various substrates such as Si, glass, polymers. The P(VDF‐TrFE) micropatterns have shown more uniform ferroelectric performances than those of unpatterned film, due likely to confinement effect. The proposed simple patterning and transfer‐printing of ferroelectric polymer thin films can be found very useful in various emerging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45028.  相似文献   

10.
We demonstrated a facile route to the preparation of self‐assembled poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] nanodots from spin‐coated thin films. We found that the initial film thickness would play an important role in the formation of such P(VDF‐TrFE) nanodots. Interestingly, the electric dipoles of such nanodots were self‐aligned toward the bottom electrode and their ferroelectric properties were determined by using piezoresponse force microscopy. In addition, the self‐polarized ferroelectric nanostructures were introduced to small molecular organic photovoltaic devices and allowed for enhancing the short circuit current density (Jsc) from 9.4 mA/cm2 to 10.2 mA/cm2 and the power conversion efficiency from 2.37% to 2.65%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41230.  相似文献   

11.
To further understand crystallization behaviors above the melting temperature (Tm), the morphologies and structure of ferroelectric poly(vinylidene fluoride/trifluoroethylene) [P(VDF–TrFE); 70/30] copolymer films at different temperatures were studied by atomic force microscopy, differential scanning calorimetry, and X‐ray diffraction (XRD). We found that there was a structural change in the P(VDF–TrFE) copolymer film above Tm, which corresponded to the transition from tightly arrayed grains to fiberlike crystals. For the samples annealed above Tm, heat treatment reduced the density of gauche defects and caused a better arrangement of the crystalline phase. So those samples were in the ferroelectric phase without gauche defects, with one sharp diffraction peak reflected in the XRD curves. It was helpful to further make clear the thermal behaviors from the melts of the P(VDF–TrFE) copolymers and discuss their application under higher temperatures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Trifluoroethylene addition and thermal treatment induced crystal phase transition in a series of poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] containing varied TrFE molar ratio (6, 9, 12, and 20 mol %) prepared from the hydrogenation of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene have been investigated by means of Fourier transform infrared spectral (FTIR), X‐ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The comprehensive applications of the three techniques could distinguish α, β and γ phase of P(VDF‐co‐TrFE) very well. The multipeak fitting technique of DSC is successfully applied to calculate the percentage of different phases in the samples, which allows us to investigate the phase transition process of P(VDF‐co‐TrFE) precisely. It is found that the crystal phase of P(VDF‐co‐TrFE) films is turned from α + γ phase (6 mol % TrFE) to α + γ + β phase (9 and 12 mol % TrFE) to β phase (20 mol % TrFE) at high temperature, and from α + γ phase (6 mol % TrFE) to γ + β phase (9 mol % TrFE) to β phase (>12 mol % TrFE) at low fabricated temperature. Both the fabrication conditions and TrFE addition are responsible for the crystal phase transition of the hydrogenised P(VDF‐co‐TrFE). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Polymer P(VDF‐TrFE) has been extensively applied in modern flexible electronics, such as nanogenerators and pressure sensors. In this study, a repolarization method is proposed to exploit the piezoelectric properties of the P(VDF‐TrFE) electrospinning film modified by the reduced graphene oxide (rGO). Then, the repolarized composite film is applied as the self‐powered flexible pressure sensor. Notably, the piezoelectric output voltage and current of the repolarized composite film are up to 1.5 V and 0.125 µA, respectively. Typically, the piezoelectric voltage of the composite film is three times as high as that of the pure spinning film. Meanwhile, this composite film also exhibits piezoresistive effect, which is ascribed to the 3D network structure of the electrospun nanofibers. In addition, the highest piezoresistive sensitivity of the pressure sensor is 0.072 kPa?1. To sum up, the pressure sensor fabricated in this study allows to simultaneously detect the static and dynamic pressure loads, which thereby has great application potentials in electronic skins (e‐skins) for human motion monitoring, such as motion state and finger bending.  相似文献   

14.
Among the wide variety of piezoelectric materials available, polymers offer an interesting solution because of their high mechanical flexibility, easy processing, and conformable features; they maintain good ferroelectric and piezoelectric properties. The most prominent examples of these are poly(vinylidene fluoride) (PVDF) and its copolymer, poly(vinylidene difluoride–trifluoroethylene) [P(VDF–TrFE)]. An attractive prospective consists of the preparation of nanostructured polymers. It has been shown that the dimensional confinement of such macromolecules down to the nanoscale can improve their piezoelectric properties because the tailoring of the chemical structure is performed at the molecular level. In this review, we show how nanostructured polymers can be obtained and discuss reports on the ferroelectric and piezoelectric properties of nanostructured PVDF and P(VDF–TrFE) materials. In particular, we show how dimensional confinement leads to piezoelectric nanostructures with relevant performances, with a focus on the macromolecular structural arrangement that enhances their behavior. Experimental results and applications are also reported to compare the performances of different nanostructuration processes and the polymer efficiencies as piezoelectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41667.  相似文献   

15.
The low elastic modulus and the ability to withstand high strain without failure make the conducting polymer attractive for a wide range of acoustic applications based on high‐strain electroactive polymers. In this article, we examine the electric and electromechanical performance of all‐polymer electromechanical systems, fabricated by painting conductive polyaniline (PANI) doped with camphor sulfonic acid (HCSA) on both sides of electrostrictive Poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) copolymer films, and compare them with those from the same copolymers with gold electrodes. The all‐polymer composite films are flexible, with strong coherent interfaces between the electrostrictive polymer layer and the conductive polymer layer. The electric performance such as dielectric properties and polarization hysteresis loops from P(VDF‐TrFE)/PANI film is nearly identical to those of P(VDF‐TrFE)/gold films in a wide temperature (from −50 to 120°C), and frequency range (from 1 Hz to 1 MHz). The all‐polymer systems also show a similar or even larger electric field induced strain response than that of films with electrodes under identical measurement conditions. The results demonstrate that the polyaniline/HCSA is good candidate material as the electrodes for electroactive polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 945–951, 2000  相似文献   

16.
Multiple‐wavelength interferometry (MWI), a new optical method for the thermal probing of thin polymer films, is introduced and explored. MWI is compared with two standard optical methods, single‐wavelength interferometry and spectroscopic ellipsometry, with regard to the detection of the glass transition temperature (Tg) of thin supported polymer films. Poly(methyl methacrylate) films are deposited by spin coating on Si and SiO2 substrates. MWI is also applied to the study of the effect of film thickness (25–600 nm) and polymer molecular weight (1.5 × 104 to 106) on Tg, the effect of film thickness on the coefficients of thermal expansion both below and above Tg, and the effect of deep UV exposure time on the thermal properties (glass transition and degradation temperatures) of the films. This further exploration of the MWI method provides substantial insights about intricate issues pertinent to the thermal behavior of thin polymer films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4764–4774, 2006  相似文献   

17.
We investigated the high dielectric constant and energy storage density for the blends of P(VDF‐TrFE) copolymer and P(VDF‐TrFE‐CFE) terpolymer. The degradation of coercive field (Ec) and remnant polarization (Pr) of the copolymer under an electric field of 125 MV/m was observed and the copolymer changed into a typical relaxor ferroelectric with doping of terpolymer. The dielectric constant of P(VDF‐TrFE) was found to be ~11, but was enhanced to ~55 by blending with P(VDF‐TrFE‐CFE) at 60 wt%. Consequently, a higher energy density of about 4.2 J/cm3 was obtained in these blends in contrast to about 3.6 J/cm3 in the terpolymer at the very low applied electric field of 125 MV/m. These results demonstrate the promise of blend approaches for tailoring and enhancing the dielectric properties of ferroelectric polymers. POLYM. ENG. SCI., 55:1396–1402, 2015. © 2015 Society of Plastics Engineers  相似文献   

18.
Poly(methyl methacrylate) (PMMA) was introduced into ferroelectric Poly(vinylidene fluoride‐co‐trifluoroethylene) P(VDF‐co‐TrFE) via a simple solution blending process and a series of P(VDF‐co‐TrFE)/PMMA blends with varied PMMA content was obtained in an effort to investigate the confinement effect of PMMA on the crystalline, dielectric, and electric energy storage properties of P(VDF‐co‐TrFE). PMMA addition could reduce the crystallinity dramatically as well as the crystal size due to its dilution effect and impediment effect on the crystallization of P(VDF‐co‐TrFE). PMMA introduction is also responsible for the phase transition of P(VDF‐co‐TrFE) from α phase into γ phase. As expected, both the dielectric constant and loss of the blends are reduced as PMMA addition increases for the dilute, decoupling, and confinement effect of PMMA on the relaxation behavior of crystal phases of P(VDF‐co‐TrFE) under external electric field. As a result, both the maximum and remnant polarization of the blends are significantly depressed. The irreversible polarization of P(VDF‐co‐TrFE) is effectively restricted by the addition of PMMA due to its impeding effect on the crystallization of P(VDF‐co‐TrFE) and restricting effect on the switch of the polar crystal domains. Therefore, the energy loss induced by the ferroelectric relaxation of P(VDF‐co‐TrFE) is significantly reduced to less than 25% at an electric field of 450 MV/m while the energy storage density is well maintained at about 10 J/cm?3 in the blend with 30 wt % PMMA. The results may help to understand how the ferroelectric relaxation affects the energy loss of ferroelectrics fundamentally and design more desirable materials for high energy storage capacitors. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40114.  相似文献   

19.
Considering the complementary properties of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)], it appears that their blends have the potential to be promising candidates for device applications. We report the evolution of morphology, ferroelectric, and mechanical properties (modulus and hardness) and their dependence on preparation temperature for PVDF–P(VDF‐TrFE) blends. From ferroelectric hysteresis measurements it was found that P(VDF‐TrFE) rich blends treated at higher temperature show significant values of remanent polarization. Remanent polarization values show a fourfold increase in these P(VDF‐TrFE) rich blends treated at higher temperature. Interestingly, blends prepared from high temperature showed greater value of remanent polarization even though they were found to consist of smaller amount of electroactive phase as compared to their low temperature treated counterpart. Nanoindentation experiments revealed that high temperature treatment improves the modulus of blends by at least 100%. This report attempts to tie these findings to the morphology and crystallinity of these blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45955.  相似文献   

20.
This study presents an investigation of the effect of the different crystalline phases of each blend component on miscibility when blending poly(vinylidene fluoride) (PVDF) and its copolymer poly[(vinylidene fluoride)‐ran‐trifluorethylene] [P(VDF–TrFE)] containing 72 mol % of VDF. It was found that, when both components crystallized in their ferroelectric phase, the PVDF showed a strong effect on the crystallinity and phase‐transition temperature of the copolymer, indicating partial miscibility in the crystalline state. On the other hand, immiscibility was observed when both components, after melting, were crystallized in their paraelectric phase. In this case, however, a decrease in crystallization temperatures suggested a strong interaction between monomers in the liquid state. Blend morphologies indicated that, in spite of the lack of miscibility in the crystalline state, there is at least miscibility between PVDF and P(VDF–TrFE) in the liquid state, and that a very intimate mixture of the two phases on the lamellar level can be maintained upon crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1362–1369, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号