首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
The thickness of the melt film and the temperature profiles within the melt film in the weld zone are key process variables governing the development of weld‐zone microstructures and the resulting development of weld strengths, during vibration welding of thermoplastics. The mathematical model described in this report is aimed at investigating the role of the rheology of the melt—specifically the magnitude and shear‐rate as well as temperature dependence of the melt viscosity—in governing the process variables such as the molten film thickness and the viscosities, stresses, and the temperatures within the melt film during vibration welding. The analysis is focused on the steady‐state penetration phase (phase III) of vibration welding. The coupled steady‐state momentum balance and heat transfer within the melt film, formulated using the Cross‐WLF (Williams‐Landel‐Ferry) relationship for viscosity, are solved in an iterative finite element framework. The model has been implemented for two different polymers displaying significant differences in viscosities and shear thinning behaviors. An attempt has been made to correlate the trends in the estimated melt film variables with the experimentally measured weld quality. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
This paper reviews the technology of melt vibration (more specifically at low frequency) to reduce viscosity during processing of plastics and to enhance mechanical performance of the solidified parts. The effect of vibration frequency and amplitude on melt viscosity is explained in terms of shear-thinning criteria. The effect of pressure and temperature on shear thinning is also reviewed to predict how these variables interfere with melt vibration. Practical applications of the principles of melt vibration are provided in injection molding, extrusion and compression molding/thermoforming, from reduction of viscosity to lowering processing temperature and pressure to the elimination of melt defects and weld lines, to the enhancement of mechanical properties, stiffness and strength, by modification of the amorphous and semicrystalline texture and orientational state. Commercially available equipments are reviewed. Results showing the effect of melt vibration during processing for two classical polymers, polystyrene and polypropylene, are discussed. The paper concludes on the remaining challenges to bring the benefits of the new technology to full commercialization.  相似文献   

3.
The vibration welding process for thermoplastics is known to consist of four phases: (1) initial heating of the interface to the melting temperature by Coulomb friction; (2) unsteady melting and flow in the lateral direction; (3) steady-state flow; and (4) unsteady flow and solidification of the film after the vibratory motion is stopped. Simple analytical models are developed for the first three phases. These models are used for estimating the molten film thickness, the size of the heat affected zone, and the weld time as functions of the weld parameters: the amplitude and frequency of the weld motion, and the weld pressure. The steady-state film thickness and the heat-affected zone are shown to be very small.  相似文献   

4.
In vibration welding of thermoplastics, frictional work done by vibrating two parts under pressure, along their common interface, is used to generate heat to effect a weld. Past work on welding characterized the effects of weld parameters such as the weld frequency, the weld pressure, and the weld time, on the welding process and weld strength, and showed that the most important parameter affecting weld strength Is the weld penetration—the decrease in the distance between the parts being welded that is caused by lateral outflow of material in the molten film. However, those weld studies were based on specimens of constant nominal thickness (6.35 mm, 0.25 in). This paper is concerned with the effects of specimen thickness on the weld process and weld strength.  相似文献   

5.
《Polymer Composites》2017,38(3):489-495
A conventional vibration welding process of fiber‐reinforced Polyamide 66 is characterized by a continuous melt flow in the quasi‐steady phase. This squeeze flow leads to a disadvantageous fiber reorientation in the weld zone. The fibers are oriented parallel to the melt flow and thus perpendicular to the common stress direction. This causes relatively low weld strength compared to the strength of the base material. Radiation crosslinking fiber‐reinforced Polyamide 66 with electron beams influences the material characteristics. As a consequence, the resulting energy balance during vibration welding is changed and the squeeze flow is impeded, thus averting the fiber reorientation in the weld seam. The scope of this article is to demonstrate the influence of radiation crosslinking on fiber orientation in vibration welds. Mechanical, calorimetric, rheological, scanning electron microscope, and light microscope investigations serve to highlight the influence of radiation crosslinking on the vibration welds of fiber‐reinforced Polyamide 66. POLYM. COMPOS., 38:489–495, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
Because of very different heating rates in hot‐tool and vibration welding, and the higher weld pressures used in vibration welding inducing more squeeze flow, the weld zones in these two processes see very different flows and cooling rates, resulting in different morphologies. The weld morphologies of bisphenol‐A polycarbonate (PC) and poly(butylene terephthalate) (PBT) for these two processes are discussed in relation to these differences. The thickness of the heat‐affected zone (HAZ) in hot‐tool welds increases with the melt time; this zone is thicker than in vibration welds. The HAZ thickness in hot‐tool welds increases from the center toward the edges. The HAZ thickness is more uniform in vibration welds. Hot‐tool welds of PC have large numbers of bubbles around the central plane; the bubble size increases from the center to the edges. PC vibration welds do not have bubbles except near the edges. Both hot‐tool and vibration welds of PBT do not have bubbles. The morphology of the HAZ in PBT is very different in hot‐tool and vibration welds. In hot‐tool welds, the resolidified material consists of a sandwich structure in which two thin layers with very small crystallites surround a thicker central layer in which the spherulites are almost as large as in the original molded material. In vibration welds, the HAZ has large crystallinity gradients across the weld zone as well as squeeze‐flow induced distortion of the small spherulites.  相似文献   

7.
The steady melting of several amorphous and semicrystalline polymers during spin welding is analyzed by solving a simplified set of momentum and energy balance equations, assuming a shear-rate and temperature-dependent viscosity. A numerical model is developed for predicting the flow field and the temperature distribution in the molten film. It is shown that the steady melting rate of the thermoplastic solid is affected by the variable viscosity, by the pressure applied on the parts to be joined, and by a balance between the viscous heat generation in the melt and the convection of colder material into the molten film. The convection of heat in the outflow direction is shown to have a much smaller effect on the melting process.  相似文献   

8.
Melt capillary flow and extrudate swelling for low density polyethylenes (LDPE), differing in ease of heavy-duty, blownfilm extrusion, have been employed as processability criteria. LDPE of good processability is characterized by a unique combination of melt fluidity, temperature, shear rate dependence and melt elasticity. These characteristics of flow are correlated with LDPE film blowing process variables such as maximum take-up speed, film thickness scatter, and extruder temperatures profile. Intuitively, these melt flow criteria should be extended to Trouton's viscosity and the tensile strength of the melt. The limited development of the elongation viscometry techniques, however, has limited their application.  相似文献   

9.
The conventional vibration welding process of polyamide 66 only has a continuous and steady melt flow during the quasi‐steady phase. The process and resulting welds have been thoroughly investigated. Radiation cross‐linking of polyamide 66 with electron beams alters the material's characteristics. Consequently, the resulting energy balance during vibration welding changes and the squeeze flow is impeded. Additionally, this causes the cross‐linking to attain a residual stiffness above the crystallite melting temperature, thereby influencing the characteristics of the vibration welding process. Further, higher weld temperatures and a change in meltdown behavior can be observed. This leads to a varied relationship amongst the process, structure, and properties for vibration welding cross‐linked polyamide. Hence, weld strengths up to the value of the base material strength are possible. The scope of this article is to investigate the influence of radiation cross‐linking on the material characteristics and, by extension, the resulting processing and welding characteristics. Calorimetric, chemical, rheological, mechanical, and optical investigations serve to highlight the influence of radiation cross‐linking on the vibration welding process of polyamide 66. POLYM. ENG. SCI., 55:2493–2499, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
A simplified 2D melt film model was established to simulate the nonisothermal melt flow during the melting process of the vibration‐induced polymer extruder of which the screw can vibrate axially. Since polymer has time‐dependent nonlinear viscoelastic characteristic with vibration force filed (VFF), a self‐amended nonisothermal Maxwell constitutive equation that can reflect the relaxation time spectrum of polymer was adopted. Using the 2D melt film model, melt films of two kinds of thickness representing different melting stages were simulated to investigate the influence tendency of the same VFF on the different melting stage. Special flow patterns and temperature distribution of melt in the melt film between the driving wall and the solid/melt interface with various vibration force fields were systematically simulated. It is found out that within a certain range of vibration strength, the application of vibration can optimize the time‐averaged shear‐rate distribution, improve the utilization efficiency of energy, and promote melting process; and the thinner the melt film is, the more intense the nonlinear viscoelastic response becomes with the same VFF; moreover, there exists optimum vibration strength to make the melting process fastest, which is in accord with the visualization experimental results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5825–5840, 2006  相似文献   

11.
A theoretical model was developed for the newly-defined delay zone of the plasticating screw extruder. The delay zone starts at the end of the solids conveying zone, i.e. at the point where the solid plug surface contacting the barrel melts and forms a film of melt up to where the steady state melting mechanism starts to operate. The model permits the film thickness and pressure profiles in this zone to be calculated. Published results were used to support the validity of the model. The results indicate that the film thickness at the end of the delay zone is several times the flight clearance. Finally, a criteria, based on the final value of the film thickness, is suggested to calculate the length of the delay zone.  相似文献   

12.
Vibration welding offers a robust method for physically joining thermoplastics to fabricate complex hollow assemblies from simpler injection‐molded articles without using an external heat source, adhesives, or mechanical fasteners. Vibration welding involves a complex interplay of several phenomena—solid (Coulomb) friction, melting, high strain‐rate, pressure‐driven, strong (high‐strain) melt flows, solidification, and microstructure development—which ultimately govern the strength and integrity of the weld. Defects in the weld region may lead to catastrophic failure of the welded assembly. In this article, the current understanding of the processing–structure–property relationships in the context of vibration welding of thermoplastics and polymer‐matrix composites is reviewed. Experimental as well as analytical methods of investigation of the vibration welding process phenomenology are presented. The interrelationships between the microstructure in the weld region and the resulting weld strength and fatigue behavior are then discussed in the light of this phenomenological information for neat polymers, filled polymers, polymer blends, and foams. This review is also aimed at identifying the areas requiring further investigation with regard to understanding vibration welding phenomenology and weld structure–property relationships. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

13.
Laser transmission welding of thermoplastics is gaining importance in industrial series production because of its advantageous properties and the increasing interest in this technology. At the same time, the demand on ongoing investigations and research to understand the processes involved is being developed intensively. In this report, a simplified mathematic–physical model of laser transmission welding based on finite‐elements method will be presented. For the first calculations, the material PA6 and the quasi‐simultaneous laser welding process mode were chosen. The model comprises of the complete laser welding process, including the heating and the cooling phase. Boundary conditions and relevant process parameters were specified for the simulation, such as the laser beam intensity, the joining pressure, and the welding time. Flow and temperature profiles were then calculated. Because of the array of available boundary conditions, it is possible to continuously improve the model while comparing the simulated data with that obtained in the experiments. The experimental data were gathered by detecting the displacement of tracer particles in dependence on time and place. Moreover, the melt layer thickness was measured. In general, very good agreement was achieved between the calculated and the measured results. Once the steady–state conditions were achieved, no change in the remaining melt layer thickness, temperature, flow velocity, or weld strength was observed. It was seen that the maximum temperature was placed in the upper layers of the absorbent partner and not in the joining surface. Accordingly, the flow behavior is first detected in the absorbent partner, and afterwards in the transparent one. POLYM. ENG. SCI. 46:1565–1575, 2006. © 2006 Society of Plastics Engineers  相似文献   

14.
Two low-density polyethylenes, a linear low-pressure (LLDPE) and a branched high-pressure (LDPE), have been compared. Their shear and extensional behavior and melt fracture phenomena have been investigated, and some mechanical and optical properties of their blown films have been measured. The rheological analysis showed major differences between the samples, both in shear viscosity and in elongational viscosity. The LLDPE exhibited two types of melt fracture, the first of which—a fine scale extrudate roughness—was not shown by the LDPE and appeared at a very low shear rate. The concomitance in LLDPE of a high shear viscosity and a low elongational viscosity and the presence of melt fracture at low shear rate resulted in its more difficult processing into film. The mechanical properties of the LLDPE film approached those of high-density polyethylene while the optical characteristics were in the range of LDPE. Such a coexistence of properties makes LLDPE an interesting material for film production.  相似文献   

15.
采用毛细管流变仪等仪器研究了一类聚乙烯熔体的挤出畸变与熔体非线性粘弹性的关系。实验发现线形大分子或带小侧基的大分子熔体,容易发生壁滑和挤出压力振荡;而有较大侧基、或相对分子质量分布宽、或带大量短支链的熔体,挤出畸变现象较轻。挤出畸变与熔体的弹性及熔体一壁面吸附状态紧密相关:容易发生壁滑和挤出压力振荡的熔体,弹性较大(人口压力降大);在壁面的吸附作用强(壁面临界剪切应力大).稳态剪切粘度大小与挤出畸变和压力振荡的关系不大;而拉伸应力和拉伸粘度大的熔体较易发生壁滑和挤出压力振荡。  相似文献   

16.
在自行设计的恒速型毛细管动态流变装置上 ,对聚合物熔体进行动态挤出实验。借助已建立的振动力场下聚合物熔体流变行为的表征公式 ,分别计算振动力场下聚合物熔体在毛细管壁处的剪切应力、剪切速率和表观粘度。与稳态挤出时相比 ,引入振动力场后 ,发现毛细管压力降、表观粘度均显著降低 ,且随着振动频率和振幅的改变呈非线性变化趋势 ,作者对此进行了深入分析。  相似文献   

17.
Reproducibility of repeated crystallization experiments from melts is obtained after annealing the melt at a sufficiently high temperature for short time, or at lower temperatures for longer time. This annealing process erases the polymer melt memory. Its physical origin remains elusive, but it is linked to precursor structures for crystallization. What precursor structures are, and how they are affected by shear flow and melt temperature is also unclear. We identify in this work two well-defined melt states: the fully relaxed melt and the melt sheared up to a steady state. Crystallization from fully relaxed melts is slowest while from melts sheared up to the steady state is fastest. We demonstrate that polymers crystallized at the same temperature from the two different melt states have similar average spherulite size, but melts sheared up to steady state have lower viscosity and low number of entanglements, this being the reason for the acceleration of crystallization kinetics in these melts. Annealing of the melts sheared up to the steady state slows down the crystallization kinetics until it becomes comparable with that of fully relaxed melts.  相似文献   

18.
利用协同学分析方法,研究了典型的平板振动剪切流熔体黏滞动力学特性(如垂直叠加的振动拖曳流),在脉振力场作用下聚合物熔体扰动本构方程的基础上,分别提出了在以上脉振动剪切流场中聚合物熔体的序参量控制方程,并建立了单螺杆脉振传递过程熔体动力学模型。  相似文献   

19.
The steady melting of rectangular thermoplastic bars in contact with hot surfaces is analyzed by solving a simplified set of the momentum and energy balance equations, assuming a temperature and shear-rate dependent melt viscosity. A numerical model is developed for predicting the flow field and the temperature distribution in the solid and molten regions of the bar and the location of the solid/melt interface. Computer simulations show that the steady melting rate of the thermoplastic solid is mainly affected by the temperature sensitivity of the melt viscosity, by the pressure applied on the end of the bar, and by a balance between heat conduction and the convection of colder material into the molten region. For the amorphous and semicrystalline polymers considered, heat convection in the outflow direction of the molten material, viscous dissipation, and shear-thinning of the melt viscosity have a much smaller effect on the melting process. These results provide an insight into conduction-induced melting with forced melt removal caused by pressure-induced flow; they also provide a basis for developing a transient model for the hot-tool welding process.  相似文献   

20.
借助流变测量和连续介质理论,不依赖已有的本构关系,对平行叠加正弦振动条件下高分子熔体经毛细管的动态挤出过程进行了理论分析。以低密度聚乙烯(LDPE)为原材料,实验测量LDPE熔体在一定振动频率和振幅下毛细管入口压力、体积流量和挤出胀大的瞬态值,即可得到动态成型过程中高分子熔体剪切应力、剪切速率和表观粘度的变化规律:随振幅和频率的变化,LDPE熔体的表观粘度呈非线性变化趋势;在不同的振幅和频率下动态挤出LDPE熔体,跟稳态挤出时一样,壁面剪切应力与壁面剪切速率也成非线性比例关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号