共查询到20条相似文献,搜索用时 15 毫秒
1.
Seyedali Monemian Seyed Hassan Jafari Hossein Ali Khonakdar Vahabodin Goodarzi Uta Reuter Petra Pötschke 《应用聚合物科学杂志》2013,130(2):739-748
A systematic study was done on morphological, electrical and rheological behavior of co‐continuous or dispersed‐type polycarbonate (PC)/acrylonitrile‐styrene‐butadiene (ABS) blends, containing different amounts of multiwalled carbon nanotubes (MWNT). The MWNTs gave substantial electrical conductivities to these nanocomposites at very low concentrations, owing to the effective melt processing method. Because of selective localization of MWNTs in the PC phase, along with double percolation phenomenon, the blend with co‐continuous morphology showed a lower electrical and rheological percolation threshold, higher melt viscosity and elasticity, as compared to the system with dispersed morphology. The morphology of both the blend systems was refined as a result of MWNTs incorporation but the morphology type remained unchanged. A typical role of compatibilizer in refining blend morphology was observed in both the systems. The electrical conductivity of the system filled with MWNTs in presence of compatibilizer, was lower than the systems filled with MWNTs only, which was attributed to role of compatibilizer in directing a part of MWNTs from PC matrix toward ABS phase. With increasing compatibilizer/MWNTs ratio, the influence of compatibilizer on morphology refinement and conductivity reduction was intensified. By comparing TEM micrograph of PC/SAN/MWNTs with that of PC/ABS/MWNTs, it was revealed that small portion of MWNTs was also located on polybutadiene rubber fraction of ABS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 739‐748, 2013 相似文献
2.
The aim of this work within the framework of mechanical recycling of polymers is upgrading recycled engineering plastics by means of a blending technique. Four different plastics from dismantled Volvo cars have been investigated. They are poly(acrylonitrile‐butadiene‐styrene) (ABS) and ABS‐polycarbonate (ABS/PC) as major components and poly(methyl methacrylate) (PMMA) and polyamide (PA) as minor components. Blending recycled ABS and PC/ABS (70/30) with a small amount of methyl methacrylate‐butadiene‐styrene core‐shell impact modifiers gives the mixture better impact properties than any of its individual components. Some 10% of PMMA from tail light housings can follow the PC/ABS blends made. The property profile will rather be improved. However, PA is an incompatible component that should be sorted out from the mixture. Antioxidants and metal deactivators do not help the recyclates show better mechanical properties. Two toughness measurements, Charpy impact strength and J‐integral method, show complimentary results for such blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 510–515, 1999 相似文献
3.
The morphology and the mechanical properties of polycarbonate (PC) blends with different acrylonitrile–butadiene–styrene (ABS) materials were investigated. PC/ABS blends based on a mass-made ABS with 16% rubber and large (0.5–1μm) rubber particles are compared to blends based on an emulsion-made ABS with 50% rubber and small, monodisperse (0.12 μm) rubber particles over the full range of blend compositions. The blends with the bulk ABS showed excellent impact strength for most compositions, and those containing 50 and 70% PC exhibited ductile to brittle transition temperatures below that of PC. The blends with the emulsion ABS showed excellent toughness in sharp notch Izod impact tests at room temperature and in standard notch Izod impact tests at low temperatures near the Tg of the rubber. By melt blending the various ABS materials with a styrene–acrylonitrile (SAN 25) copolymer, materials with lower rubber concentrations were obtained. These materials were used in blends with PC to make comparisons at constant rubber concentration of 5, 10, and 15%. The results of this investigation show that brittle ABS materials can produce tough PC–ABS blends. It is apparent that small rubber particles toughen PC–ABS blends at lower rubber concentrations and at lower temperatures than is possible with large rubber particles. However, additional work is needed to understand the nature of toughening in these PC–ABS blends with different rubber phase morphologies. It is of particular interest to understand the exceptional ductility of some of the blends at low temperatures. © 1994 John Wiley & Sons, Inc. 相似文献
4.
采用熔融共混的方法,制备了不同配比的聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯(ABS)共混物。采用毛细管流变仪研究了PC/ABS共混物的流变行为。结果表明:PC/ABS共混物熔体的流变行为呈假塑性流体的特征,表观黏度随剪切速率的增加而减小,随温度的升高而降低,随ABS含量的增加而减小;随着ABS含量的增加,共混物表观黏度对温度的敏感性降低,对剪切速率的敏感性增加;加入相容剂使PC/ABS共混物更易加工成型。 相似文献
5.
Polypropylene (PP) and acrylonitrile–butadiene–styrene (ABS) blends were prepared by a melt extrusion process. PP‐g‐acrylic acid was used as a compatibilizer. Blends with various compositions of PP, compatibilizer, and ABS were prepared and studied for morphological and mechanical properties. PP‐rich ternary blends showed good morphological and mechanical properties. The use of 5 wt % PP‐g‐acrylic acid as a compatibilizer resulted in a fine and homogeneous dispersion of the ABS phase in the PP phase. The experimental data of the tensile modulus showed good agreement in PP‐rich compositions with that generated from Kerner's model with perfect adhesion. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1731–1741, 2001 相似文献
6.
Xiangfu Zhang Yusheng Chen Yong Zhang Zonglin Peng Yinxi Zhang Wen Zhou 《应用聚合物科学杂志》2001,81(4):831-836
The effects of a compatibilizer, namely, an acrylonitrile–butadiene–styrene copolymer (ABS) grafted with maleic anhydrade (MAH) (ABS‐g‐MAH), on the mechanical properties and morphology of an ABS/polycarbonate (PC) alloy were studied The results showed that a small quantity of ABS‐g‐MAH has a very good influence on the notched Izod impact strength of the ABS/PC alloy without compromising other properties such as the tensile strength, flexural strength, and Vicat softening temperature (VST). The impact strength of the ABS/PC alloy, to a great extent, depends on the loading of ABS‐g‐MAH and the degree of grafting (DG) of MAH in the ABS‐g‐MAH. DSC analysis and SEM observation confirmed that ABS‐g‐MAH could significantly improve the compatibility of the ABS/PC alloy. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 831–836, 2001 相似文献
7.
Four carbon nanotube (CNT)‐filled polymer blends, i.e., CNT‐filled polyethylene terephthalate (PET)/polyvinylidene fluoride, PET/nylon 6,6, PET/polypropylene, and PET/high‐density polyethylene blends, have been injection‐molded and characterized in terms of their microstructures, electrical conductivities, and mechanical properties. The distribution of CNTs in the polymer blends has been examined based on their wetting coefficients and minimization of the interfacial energy. The electrical conductivity and mechanical properties have been related to the cocontinuous polymer blends, the conductive path formed by CNTs, the CNT distribution, and the intrinsic properties of the constituent polymers. It is found that to obtain a CNT‐filled polymer composite with both high electrical conductivity and good mechanical properties, it is preferred that most CNTs distribute in one polymer phase, while the other polymer phase(s) remain neat. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 477–488, 2006 相似文献
8.
Various experimental techniques and finite element modelling (FEM) were employed to assess mechanical and chemical properties of vinyl-ester (VE)/poly(acrylonitrile-butadiene-styrene) (ABS) blends with different ABS particle content. The blends were to be used as a toughening agent for interlayer toughened VE/glass composite material. Firstly, the materials' fracture toughness and tensile properties were examined, the results showing excellent toughening potential of the blends as well as a non-linear trend for fracture toughness as a function of ABS weight content. The tensile testing of the blends served to define the yield point of the materials and to obtain their stress-strain curves, which were then used as input into finite element analysis models. The mechanical testing results suggested that a chemical reaction may have occurred between the constituents of the blends. Based on the Raman spectroscopy results and mechanical testing data, 7% of ABS was believed to be the critical ABS content where significant changes in the materials' chemical composition and consequently in mechanical properties occurred. Finally, FEM was undertaken to further verify the existence of this sudden variation in material's properties. 相似文献
9.
The effects of three commercial aryl phosphate flame retardants (FRs; bisphenol A bis(diphenyl diphosphate) [BDP], triphenyl phosphate (TPP), and a proprietary oligomeric phosphate ester (OPE)) and a compatibilizer (methacrylate-butadiene-styrene copolymer [MBS]) on the thermal and mechanical properties of FR-recycled PC/acrylonitrile-butadiene-styrene copolymer (r-PC/r-ABS) blends are investigated. The addition of FRs to r-PC/r-ABS blends increases the storage, tensile, and flexural moduli, indicating a reinforcing effect. However, at elevated temperatures, FRs reduce the glass transition temperature and act as plasticizers. The thermal stability of r-PC/r-ABS/FR blends at 10% mass loss increases in the following order: r-PC/r-ABS/TPP < r-PC/r-ABS/BDP < r-PC/r-ABS/OPE < r-PC/r-ABS/OPE/MBS. Kinetics of thermal decomposition of the FR r-PC/r-ABS blends is studied calculating the thermal decomposition activation energies by the Flynn–Wall–Ozawa method. Scanning electron microscopy shows that r-PC/r-ABS/OPE blend is only partly miscible, while homogeneous structure is formed in the r-PC/r-ABS/OPE/MBS blend, which is supported by its good mechanical and thermal properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48377. 相似文献
10.
Carbon black‐ (CB) filled immiscible thermoplastic/thermosetting polymer blends consisting of polypropylene (PP) and epoxy resin were reported in this paper. The PP/epoxy/CB blends with varied compositions and different processing sequences were prepared by melt‐mixing method. The CB distribution and the relationship between morphology and electrical properties of the PP/epoxy/CB blends were investigated. Scanning electron microscopy (SEM), optical microscopy, and extraction experimental results showed that in PP/epoxy blends CB particles preferentially localized in the epoxy phase, indicating that CB has a good affinity with epoxy resin. The incorporation of CB changed the spherical particles of the dispersed epoxy phase into elongated structure. With increasing epoxy content, the elongation deformation of epoxy phase became more obvious and eventually the blends developed into cocontinuous structure. When CB was initially blended with PP and followed by the addition of epoxy resin, the partial migration of CB from PP to the epoxy phase was observed. When the PP/epoxy ratio was 40/60, the percolation threshold was reduced to about 4 phr CB, which is half of the percolation threshold of the PP/CB composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 461–471, 2006 相似文献
11.
The objective of this research is to study the effect of using maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MA) as a compatibilizer on nylon 6/acrylonitile‐butadiene‐styrene (ABS) copolymer blends. With POE‐g‐MA, nylon 6/ABS at a blending ratio of 80/20 showed an optimal result in modified impact property. Scanning electron microscopy (SEM) revealed that the particle sizes of ABS in the dispersed phase diminished as the amount of the added compatibilizer (POE‐g‐MA) increased. The compatibilizer reduced the surface tension between nylon 6 and ABS, thus increasing the compatibility of the two phases. Furthermore, studies of the rheological behavior of the system showed that the shear viscosity of nylon 6/ABS blends also increased with the introduction of POE‐g‐MA. Finally, dynamic mechanical analysis (DMA) experiments showed that adding POE‐g‐MA dramatically improved the impact strength of the blends at room temperature and low temperatures. Polym. Eng. Sci. 44:2340–2345, 2004. © 2004 Society of Plastics Engineers. 相似文献
12.
Polypropylene/Ethylene–Octene copolymer (PP/EOC) blends were prepared by melt blending technique followed by compression molding. The effect of addition of EOC on the mechanical behavior of the PP matrix was investigated. Tensile and flexural strengths decreased with the incorporation of EOC. However, the impact strength of the matrix polymer increased in all the blend systems. The blends prepared at 30% EOC content showed an increase in the impact strength to the tune of 380% as compared with polypropylene (PP) matrix. The morphology of the fractured surfaces was investigated employing Scanning Electron Microscopy. SEM micrographs depicted the formation of biphase structure, wherein the EOC phases were homogeneously dispersed as small droplets within the PP matrix. WAXD patterns revealed that the α monoclinic form of isotactic PP does not show any significant change with the incorporation of EOC up to 70 wt %. DSC thermograms revealed a decrease in the melting temperature of the virgin matrix with the addition of EOC. The blend system at 50% EOC exhibited a broad crystallization exotherm at 75°C thus indicating multiple crystallization behavior primarily attributed to the difference in the nucleation process. Further DMA analysis showed presence of two different relaxation peaks corresponding to the Tg of EOC and PP matrix respectively, confirming the formation of a biphase structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
13.
Z.Y. Tan X.F. Xu S.L. Sun C. Zhou Y.H. Ao H.X. Zhang Y. Han 《Polymer Engineering and Science》2006,46(10):1476-1484
A series of acrylonitrile–butadiene–styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene–acrylonitrile copolymer. ABS prepared were blended with bisphenol‐A‐polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends. POLYM. ENG. SCI. 46:1476–1484, 2006. © 2006 Society of Plastics Engineers. 相似文献
14.
15.
A typical commercial polypropylene and acrylonitrile–butadiene–styrene terpolymer were coextruded and injection molded in various ratios and as the pure components. The rheological properties of the pure components in a single screw extruder were analyzed. Tensile and impact properties were compared with those of the pure polymers. Stress relaxation was analyzed by a simple three-element model. The data were related to the processing conditions. The morphology of the blends was inferred from extractive and staining tests on the blends. 相似文献
16.
In this study, commercially available epoxidized and maleated olefinic copolymers, EMA‐GMA (ethylene‐methyl acrylate‐glycidyl methacrylate) and EnBACO‐MAH (ethylene‐n butyl acrylate‐carbon monoxide‐maleic anhydride), were used at 0, 5, and 10% by weight to compatibilize the blend composed of ABS (acrylonitrile‐butadiene‐styrene) terpolymer and PA6 (polyamide 6). Compatibilizing performance of these two olefinic polymers was investigated from blend morphologies, thermal and mechanical properties as a function of blend composition, and compatibilizer loading level. Scanning electron microscopy (SEM) studies showed that incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle diameter at the presence of 5% compatibilizer. The crystallization behavior of PA6 phase in the blends was explored for selected blend compositions by differential scanning calorimetry (DSC). At high compatibilizer level a decrease in the degree of crystallization was observed. In 10% compatibilizer containing blends, formation of γ‐crystals was observed contrary to other compatibilizer compositions. The behavior of the compatibilized blend system in tensile testing showed the negative effect of using excess compatibilizer. Different trends in yield strengths and strain at break values were observed depending on compatibilizer type, loading level, and blend composition. With 5% EnBACO‐MAH, the blend toughness was observed to be the highest at room temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 926–935, 2007 相似文献
17.
The dynamic mechanical properties of epoxy composites filled with different amounts of quartz powder were investigated. The storage modulus and loss tangent were measured at frequencies between 7.8 and 323 Hz from room temperature up to 460 K. The influence of the filler content on the temperature and frequency behavior of the dynamic mechanical properties is discussed and explained in terms of models presented in the literature. In particular, the dependence of the composite damping with the quartz content is explained with regard to damping due to particle–particle and polymer–particle interaction. Also, the glass‐transition temperature as a function of filler content was obtained and was related to the results obtained for the apparent activation energies of the α relaxation, which were estimated with the Williams, Landel, and Ferry equation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 883–892, 2003 相似文献
18.
N. Araújo D. Gomes J.L. Gmez Ribelles M. Monlen Pradas J.F. Mano 《Polymer Engineering and Science》2006,46(7):930-937
Sequential interpenetrating polymer networks (IPNs) were prepared by free‐radical polymerization. One of the components of the IPN was a poly(butyl acrylate) (PBA) network, and the other one was a poly(methyl methacrylate‐co‐hydroxyethyl methacrylate) copolymer network. Dynamic‐mechanical experiments show that the IPNs are phase separated: two main α relaxations occur in all samples, the low temperature one corresponding to the PBA network and that appearing at higher temperature due to the copolymer network. The latter shows a shape analogous to a pure poly(hydroxyethyl methacrylate) (PHEMA) network independently of the copolymer composition. The influence of water absorption on the dynamic‐mechanical spectrum shows that only a small amount of water reaches the butyl acrylate segments. The dependence of the mechanical behavior of the poly(methyl methacrylate‐co‐hydroxyethyl methacrylate) copolymer networks with the copolymer composition has been also analyzed. POLYM. ENG. SCI., 46:930–937, 2006. © 2006 Society of Plastics Engineers 相似文献
19.
Creep, the deformation over time of a material under stress, is one characteristic of wood‐filled polymer composites that has resulted in poor performance in certain applications. This project was undertaken to investigate the advantages of blending a plastic of lower‐creep polystyrene (PS) with high‐density polyethylene (HDPE) at ratios of 100:0, 75:25, 50:50, 25:75, and 0:100. These various PS–HDPE blends were then melt blended with a short fiber‐length wood flour (WF). Extruded bars of each blend were examined to measure modulus of elasticity and ultimate stress. Increasing the ratio of WF increased modulus of elasticity in all composites, except between 30 and 40% WF, whereas the effect of WF on ultimate stress was variable, depending on the composite. Scanning electron microscopic images and thermal analysis indicated that the wood particles interacted with the PS phase, although the interactions were weak. Finally, creep speed was calculated by using a three‐point bending geometry with a load of 50% of the ultimate stress. Creep decreased only slightly with increasing WF content but more significantly with increasing PS content, except at pure PS. The WF/75PS–25HDPE blend showed the least creep. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 418–425, 2001 相似文献
20.
The electrical and rheological behaviors of carbon black (CB)‐filled immiscible polypropylene (PP)/polystyrene (PS) blends were investigated. The compounding sequence influences the phase morphology of the ternary CB/PP/PS composites and the distribution of CB aggregates. Simultaneous measurements of resistance and dynamic modulus were carried out to monitor the phase coalescence of the ternary composites and CB migration and agglomeration in the PS phase during annealing at temperatures above the melting point of PP. The variation of resistivity is mainly attributed to CB agglomeration in the PS phase and the interfacial region, while the variation of dynamic modulus is regarded as the superimposition of the phase coalescence and CB agglomeration in the PS phase. The ternary composites with the majority of CB particles distributed in the interfacial region show the lowest conductive percolation threshold and the most stable resistivity–temperature performance during heating–cooling cycles. Copyright © 2011 Society of Chemical Industry 相似文献