首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) based composite polymer electrolyte (CPE) membranes were successfully prepared by electrospinning followed by electrophoretic deposition processes, and desirable polymer electrolytes were obtained after being activated in liquid electrolytes. The physicochemical properties of the CPEs with different electrophoretically deposited nano‐SiO2 contents were investigated by SEM, XRD, TGA, linear sweep voltammetry and electrochemical impedance spectroscopy measurements. When the ratio of electrophoretically deposited nano‐SiO2 to P(VDF‐HFP) is up to 4 wt%, the results show that the CPE membrane presents a very uniform surface with abundant interconnected micropores and possesses excellent mechanical tensile strength with high thermal and electrochemical stability; the ionic conductivity at room temperature can reach 3.361 mS cm?1 and the reciprocal temperature dependence of the ionic conductivity follows a Vogel ? Tamman ? Fulcher relationship. The interfacial resistance of the assembled Li/CPE/Li simulated cell can rapidly increase to a steady value of about 950 Ω from the initial value of about 700 Ω at 30 °C during 15 days' storage. The battery performance test suggests that the CPE also shows excellent compatible properties with commercial LiCoO2 and graphite materials. © 2015 Society of Chemical Industry  相似文献   

2.
To improve the electrochemical performance of pure poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (P(VDF‐HFP))‐based gel polymer electrolytes, different amounts of monodispersed ZrO2 nanoparticles were introduced to fabricate P(VDF‐HFP)/ZrO2 composite polymer electrolytes (CPEs) using the phase inversion method and activated processes, in which the monodispersed ZrO2 nanoparticles were synthesized by an easy route without any chelating agents or surfactants, and confirmed using scanning electron microscopy, particle size distribution measurement and X‐ray diffraction. The characterization results show that the as‐fabricated CPE membranes present not only an abundant porous structure, but also an improved mechanical strength. In particular, sample CPE‐5 presents the best properties when the doped content of the monodispersed ZrO2 nanoparticles reaches 5 wt% in the polymer matrix, in which the liquid uptake and ionic conductivity at room temperature are about 192.4% and 3.926 mS cm?1, and the electrochemical working window and thermal decomposition temperature can increase to 5.1 V and 420 °C, respectively. Moreover, an assembled LiCoO2/CPE‐5/Li coin cell can deliver excellent rate and cycling performance, in which the discharge specific capacity of the cell can show about 83.95% capacity retention at 2.0 C after 85 cycles. © 2018 Society of Chemical Industry  相似文献   

3.
The organic–inorganic hybrid material poly(styrene‐methyl methacrylate)‐silica (P(St‐MMA )‐SiO2) was successfully prepared by in situ polymerization confirmed by Fourier transform infrared spectroscopy and was employed to fabricate poly(vinylidene fluoride‐hexafluoropropylene) (P(VDF‐HFP )) based composite polymer electrolyte (CPE ) membrane. Desirable CPEs can be obtained by immersing the CPE membranes into 1.0 mol L?1 LiPF6‐EC /DMC /EMC (LiPF6 ethylene carbonate + dimethyl carbonate + ethylmethyl carbonate) liquid electrolyte for about 0.5 h for activation. The corresponding physicochemical properties were characterized by SEM , XRD , electrochemical impedance spectroscopy and charge–discharge cycle testing measurements. The results indicate that the as‐prepared CPEs have excellent properties when the mass ratio of the hybrid P(St‐MMA )‐SiO 2 particles to polymer matrix P(VDF‐HFP ) reaches 1:10, at which point the SEM analyses show that the as‐prepared P(St‐MMA )‐SiO 2 particles are uniformly dispersed in the membrane and the CPE membrane presents a homogeneous surface with abundant interconnected micropores. The XRD results show that there may exist interaction forces between the P(St‐MMA )‐SiO 2 particles and the polymer matrix, which can obviously decrease the crystallinity of the composite membrane. Moreover, the ionic conductivity at room temperature and the electrochemical working window of the CPE membrane can reach 3.146 mS cm?1 and 4.7 V, respectively. The assembled LiCoO2/CPE /Li coin cell with the CPE presents excellent charge–discharge and C ‐rate performance, which indicates that P(St‐MMA )‐SiO 2 hybrid material is a promising additive for the P(VDF‐HFP ) based CPE of the lithium ion battery. © 2016 Society of Chemical Industry  相似文献   

4.
Various kinds of nano-SiO2 using different catalysts were obtained and characterized by scanning electron microscope (SEM) technique. The results showed that the nano-SiO2 using NH3·H2O as catalyst presented the best morphology. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) membranes doped with different contents of nano-SiO2 were prepared by phase inversion method. The as-prepared CPE membranes were immersed into 1.0 M LiPF6-EC/DMC/EMC electrolytes for 0.5 h to be activated. The physicochemical and electrochemical properties of the CPEs were characterized by SEM, X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques. The results indicate that the CPEs doped with 10 % nano-SiO2 exhibit the best performance. SEM micrographs showed that the CPE membranes have uniform surface with abundant interconnected micro-pores, and the uptake ratio was up to 104.4 wt%. EIS and LSV analysis also showed that the ionic conductivity at room temperature and electrochemical stability window of the modified membrane can reach 3.372 mS cm?1 and 4.7 V, respectively. The interfacial resistance R i was 670 Ω cm?2 in the first day, then increased to a stable value of about 850 Ω cm?2 in 10 days storage at room temperature. The Li/As-fabricated CPEs/LiCoO2 cell also showed good charge–discharge performance, which suggested that the prepared CPE membranes can be used as potential electrolytes for lithium ion batteries.  相似文献   

5.
Several novel kinds of poly (vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) based composite polymer electrolyte (CPE) membranes doped with ZSM-5 (Zeolite sieve of molecular porosity) were fabricated by steam bath technique. The desirable CPE membranes were further prepared by immersing them into the liquid electrolyte solution of 1.0?M LiPF6-ethylene carbonate /dimethyl carbonate/ethylmethyl carbonate (v/v/v:1/1/1) for 1?h to be activated at room temperature. Physical and chemical properties of the as-prepared CPEs are studied by scanning electron microscope, Fourier transform infrared, thermogravimetry and differential scanning calorimetry and electrochemical methods. The results showed that the thermal and electrochemical stabilities of the CPEs can be reached to 350?°C and 5?V, respectively. Reciprocal temperature dependence of corresponding ionic conductivity follows Vogel?CTamman?CFulcher relation, and ionic conductivity at ambient temperature can be up to 5.1?mS?cm?1. The fabricated Li/CPEs/LiCoO2 coin cells with the CPE membranes prepared by steam bath technique can achieve a high discharge capacity about 144.97?mAh?g?1 at 0.1?C. At 1.0?C, the capacity can be kept to 89.84?% of that at 0.1 C for the cell. After 26 cycles, the cell prepared with these CPE membranes can keep 97.5?% of its initial discharge capacity. These excellent physicochemical and battery properties indicate that these novel CPEs can be potentially used as electrolyte in lithium ion polymer battery.  相似文献   

6.
To improve the electrochemical properties and enhance the mechanical strength of solid polymer electrolytes, series of composite polymer electrolytes (CPEs) were fabricated with hybrids of thermoplastic polyurethane (TPU) electrospun membrane, polyethylene oxide (PEO), SiO2 nanoparticles and lithium bis(trifluoromethane)sulfonamide (LiTFSI). The structure and properties of the CPEs were confirmed by SEM, XRD, DSC, TGA, electrochemical impedance spectroscopy and linear sweep voltammetry. The TPU electrospun membrane as the skeleton can improve the mechanical properties of the CPEs. In addition, SiO2 particles can suppress the crystallization of PEO. The results show that the TPU‐electrospun‐membrane‐supported PEO electrolyte with 5 wt% SiO2 and 20 wt% LiTFSI (TPU/PEO‐5%SiO2‐20%Li) presents an ionic conductivity of 6.1 × 10?4 S cm?1 at 60 °C with a high tensile strength of 25.6 MPa. The battery using TPU/PEO‐5%SiO2‐20%Li as solid electrolyte and LiFePO4 as cathode shows an attractive discharge capacity of 152, 150, 121, 75, 55 and 26 mA h g?1 at C‐rates of 0.2C, 0.5C, 1C, 2C, 3C and 5C, respectively. The discharge capacity of the cell remains 110 mA h g?1 after 100 cycles at 1C at 60 °C (with a capacity retention of 91%). All the results indicate that this CPE can be applied to all‐solid‐state rechargeable lithium batteries. © 2018 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Polymer electrolytes have attracted considerable attention as regards portable solid‐state electrochemical device applications. The present investigation is focused on the characterization of a new Na+ ion conducting polymer electrolyte (PEO)6:NaPO3 dispersed with 3–10 wt% BaTiO3 (0.7 µm) fillers. The composite polymer electrolytes (CPEs) were prepared by a solution‐casting method and characterized using various physical measurement techniques. RESULTS: Differential scanning calorimetry results indicate a maximum reduction in the degree of crystallinity of the polymer from 62.6% for uncomplexed poly(ethylene oxide) (PEO) to 27.6% for the CPE with 6 wt% BaTiO3. This substantiates an enhancement in the amorphous phase of the polymer inferred from X‐ray diffraction and optical micrographs. The CPE dispersed with 6 wt% BaTiO3 is found to be the best composition exhibiting a maximum ionic conductivity of 1.2 × 10?6 S cm?1 at 345 K with cationic transport number (t) of 0.33. CONCLUSIONS: An enhancement in the ionic conductivity of about two orders of magnitude is achieved for the composite electrolytes when compared to filler‐free solid polymer electrolyte. Correlation of the temperature‐dependent conductivity, activation energy for ion migration and transport number enables an understanding of the role played by the fillers in conduction characteristics of the CPEs. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
Poly(methylmethacrylate)(PMMA)/oxymethylene‐linked polyoxyethylene multi‐block polymer(Om‐POEn, where n represents number of unit  CH2CH2O ) blend based composite electrolyte films containing different lithium salt concentration and nanofillers' content are prepared using solvent evaporation technique. The interaction of polymer–salt complex has been confirmed using FTIR spectral studies. The figuration of CPE was studied by XRD. Ionic conductivity and thermal behavior of the CPEs were studied with various salt concentrations, temperature, and nanofillers' content. The surface structure of the CPE is also investigated using scanning electron microscopy. The high room temperature ionic conductivity, transmittivity in the visible region, and thermal stability make these CPEs potential candidates as solid‐like electrolytes for electrochemical devices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
A new polymer electrolyte based on the biopolymer Agar‐Agar doped with ammonium thiocyanate (NH4SCN) has been prepared and characterized by FTIR analysis, X‐ray diffraction measurements, AC impedance spectroscopy, transference number measurements, and DSC analysis. The Fourier transform infrared analysis confirms the complex formation between agar and NH4SCN. The amorphous nature of the polymer electrolyte has been revealed from X‐ray diffraction analysis. The highest ionic conductivity has been observed for the sample of composition 1:1 between Agar and NH4SCN. As a function of temperature, the ionic conductivity of this sample exhibits Arrhenius behavior increasing from 1.03 × 10?3 S cm?1 at ambient temperature to 3.16 × 10?3 S cm?1 at 343 K. The transference number has been estimated by the dc polarization method, and it has been proven that the conducting species are predominantly cations. Using the highest conductivity polymer electrolyte, solid state electrochemical cell has been fabricated and cell parameters are reported. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44702.  相似文献   

10.
A new poly(propylene carbonate)/poly(ethylene oxide) (PEO/PPC) polymer electrolytes (PEs) have been developed by solution‐casting technique using biodegradable PPC and PEO. The morphology, structure, and thermal properties of the PEO/PPC polymer electrolytes were investigated by scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry methods. The ionic conductivity and the electrochemical stability window of the PEO/PPC polymer electrolytes were also measured. The results showed that the Tg and the crystallinity of PEO decrease, and consequently, the ionic conductivity increases because of the addition of amorphous PPC. The PEO/50%PPC/10%LiClO4 polymer electrolyte possesses good properties such as 6.83 × 10?5 S cm?1 of ionic conductivity at room temperature and 4.5 V of the electrochemical stability window. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Methylene blue (MB) redox mediator was introduced into polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend host to prepare a gel polymer electrolyte (PVA‐PVP‐H2SO4‐MB) for a quasi‐solid‐state supercapacitor. The electrochemical properties of the supercapacitor with the prepared gel polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and self‐discharge measurements. With the addition of MB mediator, the ionic conductivity of gel polymer electrolyte increased by 56% up to 36.3 mS·cm?1, and the series resistance reduced, because of the more efficient ionic conduction and higher charge transfer rate, respectively. The electrode specific capacitance of the supercapacitor with PVA‐PVP‐H2SO4‐MB electrolyte is 328 F·g?1, increasing by 164% compared to that of MB‐undoped system at the same current density of 1 A·g?1. Meanwhile, the energy density of the supercapacitor increases from 3.2 to 10.3 Wh·kg?1. The quasi‐solid‐state supercapacitor showed excellent cyclability over 2000 charge/discharge cycles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39784.  相似文献   

12.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

13.
Natural polymers are widely used as matrices for solid polymer electrolytes (SPEs) in electrochemical devices due to their richness in nature, low cost, and biodegradation properties. Xanthan gum (XG) is a natural polymer obtained from microbial origin and when dissolved form transparent solution with high viscosity and stability even in different temperature conditions. This article describes the synthesis of XG‐based SPEs with proton conduction. These new materials were obtained by crosslinking XG with glutaraldehyde, plasticized with ethylene glycol, and doped with acetic acid as ions source. The ionic conducting membranes, casted from this polymer solution, showed a high ionic conductivity of 7.93 × 10?5 S cm?1 at room temperature, a microscopically homogeneous surface, thermal stability, and predominantly amorphous structure. These results prove that XG‐based SPEs are very promising new materials that could be applied in modern electrochemical devices. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46229.  相似文献   

14.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
A novel gel polymer electrolyte (GPE) which is based on new synthesized boron‐containing monomer, benzyl methacrylate, 1 m LiClO4/N,N‐dimethylformamidel liquid electrolyte solution is prepared through a one‐step synthesis method. The boron‐containing GPE (B‐GPE) not only displays excellent mechanical behavior, favorable thermal stability, but also exhibits an outstanding ionic conductivity of 2.33 mS cm?1 at room temperature owing to the presence of anion‐trapping boron sites. The lithium ion transference in this gel polymer film at ambient temperature is 0.60. Furthermore, the symmetrical supercapacitor which is fabricated with B‐GPE as electrolyte and reduced graphene oxide as electrode demonstrates a broad potential window of 2.3 V. The specific capacitance of symmetrical B‐GPE supercapacitors retains 90% after 3000 charge–discharge cycles at current density of 1 A g?1.  相似文献   

16.
R. Sharma  A. Sil  S. Ray 《Polymer Composites》2016,37(6):1936-1944
Polymer‐based electrolyte of lithium ion batteries and other devices have shortcomings of low ionic conductivity and inadequate mechanical strength. The study presents the preparation of polymethyl methacrylate (PMMA)‐based three‐layered nanocomposite gel polymer electrolytes (NCGPEs) having multiwalled carbon nanotubes (MWCNTs) dispersed in the middle layer of the composites and the effect of dispersoid quantities on the ionic, mechanical, and thermal characteristics of the electrolytes. The NCGPEs were synthesized by solution cast process with the various MWCNTs contents of 0.5, 1.0, 1.5, and 2.0 wt%. Morphology of the NCGPEs has been observed by scanning and transmission electron microscopes (SEMs). Interactions between the constituents of the composite and structural changes of the base polymer were investigated by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) techniques. The mechanical strength of the NCGPEs increases considerably owing to the dispersion of MWCNTs and the highest strength was found for the dispersion of 2.0 wt% of MWCNTs. The thermal stability of the nanocomposites was investigated by thermo‐gravimetric analysis (TGA). The chemical decomposition temperature of the nanocomposites increases considerably as compared to the gel polymer electrolyte. Ionic conductivity of the composite electrolyte increases with the increase in addition of MWCNTs and the maximum ionic conductivity (10−3 S cm−1) of the nanocomposite has been found with the dispersion of 2.0 wt% MWCNTs among all the dispersoid. POLYM. COMPOS., 37:1936–1944, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
Polymer electrolyte membranes based on poly(ethylene oxide) (PEO) doped with TiO2 nanoparticles were synthesized by simple solution cast technique. Mesoporous TiO2 film was prepared by doctor‐blade method. The modified polymer membranes and the mesoporous films were characterized by SEM, TEM, AFM, ionic conductivity, and J‐V measurements. Dye‐sensitized solar cells (DSSC) have been fabricated in which PEO‐polymer electrolyte doped with and without nano‐TiO2 were sandwiched between porous TiO2 and counter electrodes. The DSSC with nano‐TiO2 doped polymer electrolyte shows better performance (1.68%) in comparison with pristine polymer electrolyte (1.07%), which is due to improved ionic conductivity value in polymer electrolyte system by nano‐TiO2 doping. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Poly(2,5‐benzimidazole) (ABPBI)—a promising high‐temperature polymer electrolyte membrane—is characterized over a wide range of temperature (?50 to 220 °C) using broadband dielectric spectroscopy (BDS) to understand the various relaxation processes. The undoped ABPBI membrane shows two major secondary relaxations and a primary α relaxation. The effect of phosphoric acid (PA) and phosphotungstic acid grafted zirconium dioxide (PWA/ZrO2) nanoparticles on the chain relaxation and the proton conductivity is investigated. The phosphoric acid alters the relaxation trends, increases the number of free ions in the polymer matrix, and therefore the conductivity. The shift in the peak frequencies of different chain relaxation processes in the presence of PA and PWA/ZrO2 is attributed to the increase in free volume and the consequent easy motion of the polymer chains. The Fourier transform infra‐red (FTIR) spectroscopy of ABPBI and the acid‐doped composites show all the relevant peaks corresponding to C?C, C?N stretching, and phosphoric acid/phosphates, confirming the formation of ABPBI and doping with PA. The proton conductivity of the membranes is estimated from electrochemical impedance spectroscopy (EIS). To establish the effect of change in crystallinity on relaxations and proton conductivity, the undoped and PA‐doped membranes are characterized using thermogravimetric analysis and in situ XRD at high temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44867.  相似文献   

19.
Polymer electrolyte membranes composing of corn starch as host polymer, lithium perchlorate (LiClO4) as salt, and barium titanate (BaTiO3) as composite filler are prepared using solution casting technique. Ionic conductivity is enhanced on addition of BaTiO3 by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolyte. The highest ionic conductivity of 1.28 × 10?2 S cm?1 is obtained for 10 wt % BaTiO3 filler in corn starch‐LiClO4 polymer electrolytes at 75°C. Glass transition temperature (Tg) of polymer electrolytes decreases as the amount of BaTiO3 filler is increased, as observed in differential scanning calorimetry analysis. Scanning electron microscopy and thermogravimetric analysis are employed to characterize surface morphological and thermal properties of BaTiO3‐based composite polymer electrolytes. The electrochemical properties of the electric double‐layer capacitor fabricating using the highest ionic conductivity polymer electrolytes is investigated using cyclic voltammetry and charge‐discharge analysis. The discharge capacitance obtained is 16.22 F g?1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43275.  相似文献   

20.
Flexible epoxy network loaded with high amount of ionic liquid (IL) 1‐decyl‐3‐methylimidazolium bromide ([DMIM]Br) has been reported by using a mixture of polyol amine as curing agent. The IL presents good electrochemical response even at 170 °C, as no evidence of redox reactions was observed. The incorporation of as high as 50 wt % of this IL within the epoxy matrix resulted in solid and flexible electrolyte with good thermal stability below 180 °C, as measured by thermogravimetric analysis and ionic conductivity of around 10?6 S cm?1 at room temperature and higher than 10?3 S cm?1 at high temperature. This electrolyte presented a prodigious potential for applications in electrochemical devices at high temperature like batteries and supercapacitors, and the flexibility of this solid electrolyte persist at low temperature because of its low glass transition temperature. Furthermore, leakage problems were not observed. Thereby, impedance spectroscopy and cyclic voltammetry were performed to characterize the electrochemical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45838.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号