首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article exploits a new approach for synthesis of acrylic acid/carboxymethyl cellulose (AA/CMC) superabsorbent hydrogel in aqueous solution by a simple one‐step using glow‐discharge electrolysis plasma, in which N,N′‐methylenebisacrylamide (MBA) was used as a crosslinking agent. The reaction parameters affecting the equilibrium swelling, that is, discharge voltage, discharge time, mass ratio of AA to CMC, content of crosslinker, and degree of neutralization, were systematically optimized to achieve a superabsorbent hydrogel with a maximum equilibrium swelling. The structure, thermal stability, and morphology of AA/CMC superabsorbent hydrogel were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The swelling kinetics in distilled water and swelling behaviors in various pH solutions and salts solutions (NaCl, KCl, MgCl2, CaCl2, AlCl3, and FeCl3) were investigated in detail. The effect of six cationic salt solutions on the equilibrium swelling had the following order K+ > Na+ > Mg2+ > Ca2+ > Al3+ > Fe3+. In addition, the pH‐reversibility was preliminarily investigated with alternating pH between 6.5 and 2.0. The results showed that the equilibrium swelling of AA/CMC was achieved in 90 min. The hydrogel was responsive to the pH and salts, and was reversible swelling and deswelling behavior. POLYM. ENG. SCI., 54:2310–2320, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
In this paper, attention is paid to synthesis and swelling behavior of a superabsorbent hydrogel based carboxymethylcellulose (CMC) and polyacrylonitrile (PAN). The physical mixture of CMC and PAN was hydrolyzed in NaOH solution to yield hydrogel, CMC–poly(NaAA‐co‐AAm). During alkaline hydrolysis, the nitrile groups of PAN were completely converted to a mixture of hydrophilic carboxamide and carboxylate groups followed by in situ crosslinking of the grafted PAN chains. A proposed mechanism for hydrogel formation was suggested and the structure of the product was established using FTIR spectroscopy. The reaction variables affecting the swelling capacity of the hydrogel were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Swelling measurements of the synthesized hydrogels in various chloride salt solutions indicated a swelling‐loss with increase in the ionic strength of the salt solutions. The pH of the various solutions also affected the swelling of the superabsorbent. Furthermore, the present hydrogels showed a pH‐reversible property. Finally, the swelling kinetics of synthesized hydrogels with various absorbent particle sizes was briefly examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
A novel application, utilizing polyacrylamide‐g‐carboxymethyl cellulose (CMC‐g‐PAM) in concentrating dilute solutions of Bovine serum albumin (BSA), was investigated. The grafting reaction parameters were investigated and the hydrogel smartness was verified. FT‐IR proved that the grafting reaction occurred between the hydroxyl group located in anhydroglucose C2 position of CMC and the π‐bond of PAM and SEM confirmed a changed morphology to a fibrillar structure. The pH sensitivity was proved; as the grafted polymer attained its maximum swelling at pH 7.2 while the minimum swelling was observed under acidic conditions (pH 1‐3). The rate of water uptake in the grafted polymer hydrogel was higher than that of the homopolymer hydrogel and the swelling behaviors of both hydrogels obeyed second‐order kinetics. The tested hydrogel showed a high potency towards concentrating BSA solutions with a concentration factor of 1 to 4.5 times and recovery of 60–90%. The concentration factor increased linearly with increasing both the polymer concentration and the process time and decreased with the increase in the protein concentration. The grafted polymer had stable efficiency in the concentration process for 20 cycles. The obtained results have recommended the employment of the prepared CMC‐g‐PAM hydrogel in the down stream protein concentration process in the industrial scale. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

4.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

5.
A series of functional copolymer hydrogels composed of carboxymethyl cellulose (CMC) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) were synthesized using γ‐radiations‐induced copolymerization and crosslinking. Preparation conditions were optimized, and the swelling characteristics were investigated. The ability of the prepared hydrogels to recover some toxic metal ions from their aqueous solutions was studied. The prepared hydrogel showed a great capability to recover metal ions such as: Mn+2, Co+2, Cu+2, and Fe+3 from their solutions. The data revealed that the chelating ability of the prepared hydrogels is mainly dependent on their internal composition, in addition to the physical properties of the metal ion solution such as pH and metal ion concentration. The data show that the chelating ability of the prepared hydrogels increases by increasing the AMPS content in the hydrogel as well as the increment in the pH of the solution and the metal ion concentration. The prepared CMC/AMPS copolymer hydrogels are chemically stable enough to be reused for at least five times with the same efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
To synthesize a novel biopolymer‐based superabsorbent hydrogel, 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) was grafted onto kappa‐carrageenan (κC) backbones. The graft copolymerization reaction was carried out in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator, N,N,N′,N′‐tetramethyl ethylenediamine (TMEDA) as an accelerator, and N,N′‐methylene bisacrylamide (MBA) as a crosslinker. A proposed mechanism for κC‐g‐AMPS formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The affecting variables on swelling capacity, i.e., the initiator, the crosslinker, and the monomer concentration, as well as reaction temperature, were systematically optimized. The swelling measurements of the hydrogels were conducted in aqueous solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, SrCl2, BaCl2, and AlCl3. Due to the high swelling capacity in salt solutions, the hydrogels may be referred to as antisalt superabsorbents. The swelling of superabsorbing hydrogels was measured in solutions with pH ranging 1 to 13. The κC‐g‐AMPS hydrogel exhibited a pH‐responsiveness character so that a swelling–deswelling pulsatile behavior was recorded at pH 2 and 8. The overall activation energy for the graft copolymerization reaction was found to be 14.6 kJ/mol. The swelling kinetics of the hydrogels was preliminarily investigated as well. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 255–263, 2005  相似文献   

7.
Hydrogels composed of etherificated sodium alginate (ESA), sodium acrylic acid (NaAA), and poly (vinyl alcohol) (PVA) were synthesized by aqueous solution polymerization. The effects of reaction variables such as terminal pH, ions, and ionic strength on hydrogel swelling ratio (SR) were determined and compared. SR was influenced strongly by pH and ionic strength. SR increased with increasing pH but tended to decrease with PVA content. At a given ionic strength, SR of ESA/NaAA/PVA hydrogel was dependent on the valence of anion; SR was higher in multivalent anion salt solution than in monovalent anion salt solution, i.e., SRK2SO4 > SRKCl and SRNa2SO4 > SRNaCl. The swelling kinetic of the hydrogels showed Fickian kinetic diffusion in acidic media and non‐Fickian behavior in alkaline media. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A facile method was explored to synthesize thermosensitive poly[N‐isopropylacrylamide (NIPAM)‐co‐methacryloxyethyltrimethyl ammonium chloride (DMC)]/Na2WO4 cationic hydrogels via copolymerization of NIPAM and DMC in the presence of Na2WO4. Na2WO4 acted as both a physical crosslinking agent and a porogen precursor. The hydrogels were characterized by Fourier transform infrared spectroscopy, energy dispersive X‐ray, thermogravimetry, environmental scanning electron microscopy, and transmission electron microscopy. Effects of various salt solutions, pH solutions on swelling were investigated. Thermosensitivity of the hydrogels were also investigated in various polar solvents at different temperatures. The resultant hydrogel showed a fast swelling rate and good salt tolerance. The hydrogels reached the swelling equilibrium within 10 min. Moreover, the swelling ratio of the hydrogels increased with the increase of the polarity of the solvent. In the water, the swelling ratio decreased with the increasing of temperature, but remained at a high level even at 80 °C since the pore structure weaken the lower critical solution temperature effect of PNIPAM. The swelling ratio increased instead in low polar solvent, while it became negligible in nonpolar solvent with the increasing of temperature. The whole swelling kinetics was fit for Schott's pseudo‐second order model. The hydrogels have a great potential as catalysts and smart materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46375.  相似文献   

9.
A series of pH‐sensitive composite hydrogel beads, carboxymethyl cellulose‐g‐poly(acrylic acid)/attapulgite/sodium alginate (CMC‐g‐PAA/APT/SA), were prepared by combining CMC‐g‐PAA/APT composite and SA, using Ca2+ as the ionic crosslinking agent and diclofenac sodium (DS) as the model drug. The effects of APT content and external pH on the swelling properties and release behaviors of DS from the composite hydrogel beads were investigated. The results showed that the composite hydrogel beads exhibited good pH‐sensitivity. Introducing 20% APT into CMC‐g‐PAA hydrogel could change the surface structure of the composite hydrogel beads, decrease the swelling ability, and relieve the burst release effect of DS. The drug cumulative release ratio of DS from the hydrogel beads in simulated gastric fluid was only 3.71% within 3 hour, but in simulated intestinal fluid about 50% for 3 hour, 85% for 12 hour, up to 90% after 24 hour. The obtained results indicated that the CMC‐g‐PAA/APT/SA hydrogel beads could be applied to the drug delivery system as drug carriers in the intestinal tract. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
In this study, carboxymethyl chitosan (CMC) hydrogel beads were prepared by crosslinking with Ca2+. The pH‐sensitive characteristics of the beads were investigated by simulating gastrointestinal pH conditions. As a potential protein drug delivery system, the beads were loaded with a model protein (bovine serum albumin, BSA). To improve the entrapment efficiency of BSA, the beads were further coated with a chitosan/CMC polyelectrolyte complex (PEC) membrane by extruding a CMC/BSA solution into a CaCl2/chitosan gelation medium. Finally, the release studies of BSA‐loaded beads were conducted. We found that, the maximum swelling ratios of the beads at pH 7.4 (17–21) were much higher than those at pH 1.2 (2–2.5). Higher entrapment efficiency (73.2%) was achieved in the chitosan‐coated calcium‐CMC beads, compared with that (44.4%) in the bare calcium‐CMC beads. The PEC membrane limited the BSA release, while the final disintegration of beads at pH 7.4 still leaded to a full BSA release. Therefore, the chitosan‐coated calcium‐CMC hydrogel beads with higher entrapment efficiency and proper protein release properties were a promising protein drug carrier for the site‐specific release in the intestine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3164–3168, 2007  相似文献   

11.
The swelling behavior of balanced acrylamide (AAm)‐based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. Equimolar ratio of the ionic comonomers 4‐vinylpyridine (cationic monomer) and acrylic acid (anionic monomer) were used together with the nonionic monomer AAm in the hydrogel preparation. The variations of the hydrogel volume in response to changes in pH were measured. It was found that the hydrogels are in a collapsed state not only at the pH of the isoelectric point pHIEP but also over a wide range of pH including pHIEP. The width of the collapsed plateau increased and the hydrogels assumed a more compact state as the ionic group content is increased. The antipolyelectrolyte behavior was observed along the collapsed plateau region, where the gel occupies a larger volume in salt solution. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Superabsorbent copolymer hydrogels were prepared by gamma irradiation of aqueous solutions of 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) and 2‐dimethyaminoethyl methacrylate (DEMA) monomers mixtures. The thermal stability of hydrogels was evaluated by thermogravimetric analysis. The ability to adsorb Cu2+ ions and dyes by the prepared hydrogels from aqueous solutions was investigated. The swelling study, in water, showed that the hydrogels based on pure AMPS monomer and AMPS/DEMA copolymers reached the equilibrium state after 6 h. However, the hydrogel based on pure AMPS monomer showed higher swelling than the copolymer hydrogels based on AMPS/DEMA. It was found that the copolymer hydrogels based on different compositions showed affinity to absorb Cu2+ metal ions as well as basic and acid dyes; however, this affinity was found to decrease with increasing the ratio of DEMA in the initial feeding solutions. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
A pH‐, temperature‐, and salt‐sensitive hydrogel was synthesized using acrylic acid (AA) as monomer, natural polysaccharide Aloe vera as backbone, ammonium persulfate–N,N‐methylene‐bis‐acrylamide as an initiator–crosslinker system via free‐radical grafting method. Different parameters such as treatment time, temperature, amount of solvent, pH, concentration of initiator, crosslinker and monomer were screened using Plackett–Burman design (PBD). The PBD showed that pH, monomer, and crosslinker were taken as the most important variables, which highly impact the swelling behavior of the synthesized hydrogel as compared to the rest of the variables. The half normality plot was used to find the significant parameters regarding the swelling capacity of the hydrogel. The center composite design was used for further optimizing the important variables like pH, monomer, and crosslinker. The pH and monomer interaction on percentage swelling (Ps) was studied through the analysis of variance model. Synthesized hydrogel Av‐cl‐poly(AA) was characterized by different techniques such as Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction, and scanning electron microscopy (SEM). The effect of different chloride salt solutions like KCl, NaCl, BaCl2, FeCl3, and CoCl3·6H2O on Ps of synthesized Av‐cl‐poly(AA)‐based hydrogel was also studied. Biodegradation studies of the synthesized polymer were also carried out using soil burial and vermicompositing methods. Biodegradation of semi interpenetrating polymer network (SIPN) was confirmed by SEM and FTIR techniques. Synthesized SIPN was also used as a device for the removal of dye and was found very effective as an adsorbent. POLYM. ENG. SCI., 59:2323–2334, 2019. © 2019 Society of Plastics Engineers  相似文献   

14.
Poly(γ-glutamic acid) (PGA) and poly(?-lysine) (PL) solutions were used as components to prepare mixed hydrogels by γ irradiation. A PGA and PL mixed solution was crosslinked to form a hydrogel with specific water content (weight of absorbed water/weight of dry gel) of 10–100 when the 5 wt % solution of mixed polymer was exposed to γ radiation of 87 kGy dosage under N2 atmosphere. The specific water content increased with increasing PGA content of the PGA/PL mixed gel. The influence of pH and salt concentration on equilibrium swelling was studied. A characteristic pH-sensitive swelling behavior was obtained using compositional changes of PGA and PL in the gel. PGA/PL 50/50 wt % mixed gel swelling in acid (pH < 4.0) and alkaline (pH > 6.0) conditions and was deswelled between pH 4.0 and 6.0 due to the ionic composition changes of the gel network. With an increase in the ratio of PGA to PL, the hydrogels showed increasing sensitivity to salt solutions (NaCl, Na2SO4, and CaCl2). In addition, degradation of PGA/PL gel by protease produced from Aspergillus oryzae was investigated at 40°C and pH 7.0. PL gel was degraded completely within 2 days. An increase in the ratio of PAG in the PGA/PL mixed gel led to a decrease in the degree of degradation as expected. Some subtle degradation changes were found in the 50/50 and 80/20 wt % (PGA/PL) gels that were degraded by only 3.5 and 3.8% by protease, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
A novel superabsorbent hydrogel has been synthesized with the crosslinking graft copolymerization of acrylic acid (AA) and acrylamide onto the chain of silk sericin. Potassium persulfate (KPS)–sodium sulfite (NaHSO3) as redox initiation system and N,N′-methylenebisacrylamide (MBA) as crosslinker were used. The structure of the product characterized by Fourier transform infrared absorption spectroscopy and the surface morphology of the hydrogel were observed by scanning electron microscopy. The certain parameters of the graft copolymerization including the monomer, the initiator, the crosslinker concentration, neutralization degree of AA, reaction temperature, and time were systematically optimized to achieve a hydrogel with maximum swelling capacity (2150 g/g). The optimal conditions were initiator 8 mmol/L, MBA 2.5 mmol/L, neutralization degree of AA 75%, reaction temperature 55 °C, and time 6 h. The swelling ratio in salt solutions was also determined (in 0.9% NaCl aqueous solution: 98 g/g). In addition, the swelling capability of the hydrogel was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-dependent character. Water absorbency of the product in aqueous chloride salt solutions has the Na+ > Ca2+ > Mg2+ > Al3+ order in the investigated concentration.  相似文献   

16.
Multifunctional hydrogels combining the capabilities of cellular pH responsiveness and shape memory, are highly promising for the realization of smart membrane filters, controlled drug released devices, and functional tissue‐engineering scaffolds. In this study, lipase was used to catalyze the synthesis of medium‐chain‐length poly‐3‐hydroxyalkanoates‐co‐polyethylene glycol methacrylate (PHA‐PEGMA) macromer, which was used to prepare pH‐responsive and shape memory hydrogel via free radical polymerization. Increasing the PEGMA fraction from 10 to 50% (mass) resulted in increased thermal degradation temperature (Td) from 430 to 470°C. Highest lower critical solution temperature of 37°C was obtained in hydrogel with 50% PEGMA fraction. The change in PEGMA fraction was also found to highly influence the hydrogel's hydration rate (r) from 2.8 × 10?5 to 7.6 × 10?5 mL·s?1. The hydrogel's equilibrium weight swelling ratio (qe), protein release and its diffusion coefficient (Dm) were all found to be pH dependent. Increasing the phosphate buffer pH from 2.4 to 13 resulted in increased qe from 2 to 16 corresponding to the enlarging of network pore size (ξ) from 150 to 586 nm. Different types of crosslinker for the hydrogel influenced its flexibility and ductility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41149.  相似文献   

17.
Radiation‐crosslinked 2‐hydroxyethylmethacrylate/citric acid (HEMA/CAc), 2‐hydroxyethylmethacrylate/tartaric acid (HEMA/TA), and 2‐hydroxyethylmethacrylate/succinic acid (HEMA/Sc) copolymers were prepared by using 60Co γ‐rays. The gel fraction yield and the swelling behavior of the prepared hydrogels were studied. It was shown that increasing irradiation doses was accompanied by an increase in yield of gel fraction and a decrease in swelling degree. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, swelling exponent, and diffusion coefficient of the hydrogels were determined by studying the swelling behavior of the hydrogels prepared. It was seen that the equilibrium swelling degree increases as the content of acid increases, as a result of introducing more hydrophilic groups. When the hydrophilic polymer (acids) varies in the content range of 40–80 mg, swelling exponents (n) decreases, thereby indicating a shift in the water‐transport mechanism from the anomalous (non‐Fickian)‐type to the Fickian‐type. Characterization and some selected properties of the prepared hydrogels were studied, and accordingly the possibility of its practical use in the treatment of industrial wastes such as dyes and heavy metals (Fe, Ni, Co, and Cu) were also studied. The effect of treatment time, pH of feed solution, initial feed concentration, and temperature on the dye and heavy metals uptake was determined. The uptake order for a given metal was HEMA/TA hydrogel > HEMA/CAc > HEMA/Sc hydrogel. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

19.
A novel, physically stabilized hydrogel system composed of chitosan (Chi) or its derivatives [e.g., carboxymethyl chitosan (CMC), sodium carboxymethyl chitosan, or trimethyl carboxymethyl chitosan (TMCMC)] with poly(vinyl pyrrolidone) (PVP) or opened‐ring poly(vinyl pyrrolidone) (OR–PVP) were prepared and characterized. TMCMC was synthesized by a novel method with dimethylsulfate as the methylation agent. The synthesized materials were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and size exclusion chromatography. The mechanical properties, gel fraction, swelling behavior, and water state of the prepared hydrogels were investigated. Gelation occurred when the OR–PVP and Chi solutions were blended within a few seconds. However, the gelation of the OR–PVP and CMC solutions needed pH adjustment. No gelation occurred when the solutions of TMCMC and PVP or OR–PVP were blended. The quaternization or protonization of  NH2 groups may have prevented the gelation of the solutions. The amino groups of Chi derivatives should have been free to take part in hydrophilic bonds between the two polymers. The physical entanglement of polymeric chains and strong hydrogen bonds between the polymers were considered as mechanisms for the formation of the physical hydrogels. The physical hydrogels showed ionic and pH‐sensitive swelling properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The novel amphoteric, pH‐sensitive, biodegradable poly([chitosan‐g‐(L ‐lactic‐co‐citric) acid]) hydrogel (CLC) was synthesized through the reaction of chitosan (CS) with poly(L ‐lactic‐co‐citric acid) (PLCA). The structure of CLC was characterized by Fourier transform infrared spectroscopy, elemental analysis, and wide‐angle X‐ray diffraction measurement. The degree of substitution of CS amino groups was evaluated from salicylaldehyde analysis. The swelling behavior of CLC film in an aqueous solution with various pHs and the apparent swelling kinetics were studied. The swelling mechanisms of CLC film in acidic and alkaline mediums are discussed. The results showed that CLC hydrogel had a higher degree of swelling in the pH range of 4 > pH > 8 and that the swelling rate order in different buffers was neutral > acidic > basic mediums. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3850–3854, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号