首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electrically conducting composites consisting of alternating polypropylene (PP) and carbon black (CB)-filled polypropylene (PPCB) layers were prepared by multilayered coextrusion. The co-continuous structure with selective location of CB in PPCB layers was controllable by changing the number of multiplying elements, and decreased the percolation threshold and electrical resistivity of multilayered composites because of the double percolation effect. This double percolation could be achieved in a single polymer matrix using multilayered coextrusion, whereas it can only be produced in two different polymeric matrices by conventional approaches. Results showed that the dispersion of CB aggregates in PPCB layers was greatly affected by the shearing forces induced by the horizontal spreading flow and vertical recombination occurring during the multilayered coextrusion. The electrical resistivity, positive temperature coefficient effect and mechanical properties of multilayered composites depended strongly on their number of layers. A brittle-ductile transition occurred in PPCB layer compared with the conventional composites. The interesting positive and negative temperature coefficient effects occurred during crystallization and depended on the number of layers. A mechanism is proposed to explain these phenomena.  相似文献   

2.
We have established that the PP/PA6/CB composite with 3D microfibrillar conducting network can be prepared in situ using melt spinning process. CB particles preferably were localized at the interface between polypropylene as the matrix and PA6 microfibrils, which act as the conducting paths inside the matrix. The percolation threshold of the system reduced when aspect ratio of the conducting phase was increased by developing microfibrillar morphology. The effect of annealing process on the conductivity of PP/PA6/CB composite with co‐ continuous and microfibrillar morphologies was studied. It was observed that, annealing process forces CB particles towards the interface (2D space) of PP and PA6 co‐continuous phases, and percolation threshold and critical exponent of classical percolation theory will be decreased, while the conductivity of conducting composite with microfibrillar morphology was not affected considerably by annealing process at temperatures either higher or lower than the melting point of the PA6 microfibrils. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
In this study, a polar conductive filler [carbon black (CB)], a nonpolar polymer [polypropylene (PP)], and a polar polymer [nylon 6 (PA6)] were chosen to fabricate electrically conductive polymer composites by melt blending and compression molding. The morphological developments of these composites were studied. Scanning electron microscopy results showed that in a CB‐filled PP/PA6 (CPA) composite, CB particles were selectively dispersed in PA6 phases and could make the dispersed particles exist as microfiber particles, which could greatly improve the electrical conductivity. The PA6 and CB contents both could affect the morphologies of these composites. The results of electrical resistivity measurements of these composites proved the formation of conductive networks. The resistivity–temperature behaviors of these composites were also studied. For CB‐filled PP (CP) composites, there were apparent positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects and an unrepeatable resistivity–temperature characteristic. However, for CPA composites, there were no PTC or NTC effects from room temperature to 180°C, and the resistivity–temperature behavior showed a repeatable characteristic; this proved that CB particles were selectively dispersed in the PA6 phase from another point of view. All experimental results indicated that the addition of PA6 to a CP composite could lead to an expected morphological structure and improve the electrical conductivity of the CP composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Blends of polypropylene (PP) with 0 to 100 wt% of polypropylene grafted with acrylic acid (AA-g-PP) were used to promote the adhesion to polyamide 6 (PA 6) in a three-layer coextruded film without using an additional adhesive or tie-layer. The effect of modified polymer content and its molecular weight on interfacial adhesion between PP and PA 6 was determined by T-peel strength measurements. The effect of melt temperature and bonding time on peel strength was determined. Oxygen and water vapor transmission rates of the films were measured. The peel strength of fusion bonded layers of PP/AA-g-PP blends with PA 6 strongly depends on bonding temperature and time, as well as on the molecular weight of the functionalized polymer. The peeled films surfaces were characterized using FTIR-ATR and scanning electron microscopy (SEM). Tensile properties of three-layer films, made up of PA 6 as the central layer and PP/AA-g-PP blends as the two external layers, are improved with increase in the acrylic acid (AA) content in the blend. The formation of an in situ copolymer between AA in the blend and the terminal amine groups of PA 6 was confirmed by the Moalu test.  相似文献   

5.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

6.
Polymer blended materials such as polyamide 6 (PA6)/polypropylene (PP) blends have received considerable attention in recent years. To improve the compatibility of PA6 and PP, compatibilizers like maleic anhydride‐g‐polypropylene (MPP) are often added. In addition, organically modified montmorillonite (MMT) is also used to improve the properties of various materials. In this work, the crystallization behavior of PP/PA6/MMT nanocomposites with MPP compatibilizer was investigated systematically. The annealing process effectively improved the crystallization of α‐PP. The crystallization temperature (Tc) of PA6 was increased by ca 2–3 °C on introducing MPP or MMT alone to the PP/PA6 system, whereas Tc of PP underwent no obvious change. However, when MPP and MMT were added simultaneously, Tc of PP and PA6 increased by 6.6 and 4.2 °C, respectively, and a new crystallization peak corresponding to PP‐g‐PA6 copolymer phase was observed at 162.5 °C. The combined effect of MPP and MMT led to better compatibility of PP with PA6. Moreover, the results of a non‐isothermal crystallization kinetics experiment revealed that the simultaneous introduction of MPP and MMT markedly shortened the crystallization time. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Multilayered composites of polypropylene (PP) and polystyrene (PS) fabricated by a layer‐multiplying coextrusion technique are described. The aim of this investigation was to find a correlation between the morphology and the mechanical and micromechanical deformation behavior. The multilayered films had primarily continuous layers, exhibiting only few defects in layer construction and turning into an irregularly layered system when the calculated layer thickness was only 5 nm. The morphology and layer thickness of both the PP and PS layers affected the mechanical and the micromechanical behavior, which was brittle for the films having PS layers thicker than 75 nm and ductile when the PS layers were 50 nm and thinner. Transmission electron microscopy showed crazes in the thicker PS layers and homogeneous deformation in the thinner ones. The molecular orientation during deformation of the ductile films was calculated from rheo‐optical measurements with Fourier transform infrared spectroscopy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This work attempts to develop a carbon black (CB) filled conductive polymer composite based on poly(ethylene terephthalate) (PET) and polypropylene (PP). The process follows by localizing the CB particles in the minor phase (PET), and then the conductive masterbatch was elongated to form conductive microfibrils in PP matrix during melt extrusion process. After compression molding, a fine conductive three‐dimensional microfibrillar network is constructed. For comparison purpose, CB, PET, and PP are mixed using different pattern. The morphology and the volume resistivity of the obtained composites are evaluated. Electrical conductivity investigation shows that the percolation threshold and resistivity values are dependent on the CB concentration. The best morphological observation shows that the PET phases forms well‐defined microfibrils, and CB particles overwhelmingly localize in the surfaces of the PET microfibrils, which led to a very low percolation threshold, i.e., 4.5 phr, and a reasonable conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this work, polyamide 6 (PA6) as a charring agent has been used in combination with thermoplastic polyurethane (TPU)‐microencapsulated ammonium polyphosphate (MTAPP) forming intumescent flame retardants (IFRs) which applies in polypropylene (PP). The effects of the IFRs on the flame retardancy, morphology of char layers, water resistance, thermal properties and mechanical properties of flame‐retardant PP composites are investigated by limiting oxygen index (LOI), UL‐94 test, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical properties test. The results show that the PP/MTAPP/PA6 composites exhibit much better flame‐retardant performances than the PP/MTAPP composites. The higher LOI values and UL‐94 V‐2 of the PP/MTAPP composites with suitable amount of PA6 are obtained, which is attributed to the thick and compact char layer structure evidenced by SEM. The results from TGA and DSC demonstrate that the introduction of PA6 into PP/MTAPP composites has a great effect on the thermal stability and crystallization behaviors of the composites. Furthermore, the mechanical properties of PP/MTAPP/PA6 composites are also improved greatly due to the presence of PA6 as a charring agent. POLYM. ENG. SCI., 55:1355–1360, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

11.
The effect of a thin tie layer on the adhesion of polypropylene (PP) and polyamide‐66 (PA) was studied by delamination of microlayers. The microlayers consisted of many alternating layers of PP and PA separated by a thin layer of a maleated PP. The peel toughness and delamination failure mode were determined using the T‐peel test. Without a tie layer, there was no adhesion between PP and PA. A tie layer with 0.2% MA provided some adhesion; however, delamination occurred by interfacial failure. Increasing the maleic anhydride (MA) content of the tie layer increased the interfacial toughness. With 0.5% MA, the interfacial toughness exceeded the craze condition of PP, and a transition from interfacial delamination to craze delamination occurred. Crazing ahead of the crack tip effectively reduced the stress concentration at the interface and dramatically increased the delamination toughness. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1461–1467, 1999  相似文献   

12.
The influence of hyperbranched polymer grafted polypropylene (PP‐HBP) on the morphology of polypropylene (PP)/polyamide 6 (PA6) blends has been investigated. The final morphology was strongly influenced by the PP‐HBP compatibilizer concentration. At low concentrations, PP‐HBP acts as an emulsifying agent, reducing the size of the dispersed phase and preventing coalescence. This is due to the high reactivity and diffusitivity of PP‐HBP rapidly forming a high density of copolymers at the interface. Compared to the use of maleic anhydride grafted PP (PP‐MAH) at identical concentrations, PP‐HBP yielded a smaller dispersed phase particle size. Therefore, PP‐HBP allows the use of less compatibilizer to obtain identical morphologies. At higher compatibilizer concentrations, it has been shown that the PP‐HBP efficiently stabilizes the interface and inhibits both coalescence and breakup of the PA6 droplets. The high concentration of reactive sites and the ability of PP‐HBP to react with both chain‐ends of PA6 suggest that interfacial stabilization occurs because of the formation of a partly crosslinked interface. The interfacial stabilization effects generated by PP‐HBP should allow one to control the morphology of polymer blends in order to create specific functional morphologies.  相似文献   

13.
The volume resistivity and percolation thresholds of carbon black (CB) filled polypropylene (PP), PP/epoxy, and PP/epoxy/glass fiber (GF) composites were measured. The morphology of these conductive polymer composites was studied with scanning electron microscopy (SEM). The effects of the GF and epoxy contents on the volume resistivity were also investigated. The PP/epoxy/GF/CB composite exhibited a reduced percolation threshold, in comparison with that of the PP/CB and PP/epoxy/CB composites. At a given CB content, the PP/epoxy/GF/CB composite had a lower volume resistivity than the PP/CB and PP/epoxy/CB composites. SEM micrographs showed that CB aggregates formed chainlike structures and dispersed homogeneously within the PP matrix. The addition of the epoxy resin to PP resulted in the preferential location of CB in epoxy, whereas in the PP/epoxy/GF multiphase blends, because of the good affinity of CB to epoxy and of epoxy to GF, CB particles were located in the epoxy phase coated on GF. The decreased percolation threshold and volume resistivity indicated that conductive paths existed in the PP/epoxy/GF/CB composite. The conductive paths were probably formed through the interconnection of GF. Appropriate amounts of GF and epoxy should be used to decrease the volume resistivity and provide sufficient epoxy coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1142–1149, 2005  相似文献   

14.
The effect of a particulate nucleating agent on fractionated crystallization of polypropylene (PP) was studied. A novel method utilizing breakup of PP nanolayers was used to obtain a dispersion of PP droplets in a polystyrene (PS) matrix. An assembly with hundreds of PP nanolayers alternating with thicker PS layers was fabricated by layer‐multiplying coextusion. The concentration of an organic dicarboxylic acid salt (HPN) nucleating agent in the coextruded PP nanolayers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the thin PP layers produced a dispersion of PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that layer breakup produced a bimodal particle size distribution of submicron particles and large, micron‐sized particles. Almost entirely submicron particles were obtained from breakup of 12 nm PP layers. The fraction of PP as submicron particles dropped dramatically as the PP nanolayer thickness increased to 40 nm. Only large, micron‐sized particles were obtained from 200 nm PP nanolayers. The crystallization behavior of the particle dispersions was characterized by thermal analysis and wide angle X‐ray diffraction. Only part of the PP was nucleated by HPN. It was found that HPN was not effective in nucleating the population of submicron particles. The particulate HPN was too large to be accommodated in the submicron PP particles. On the other hand, the amount of nucleated crystallization qualitatively paralleled the fraction of PP in the form of large, micron‐sized particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
The electrical and rheological behaviors of carbon black (CB)‐filled immiscible polypropylene (PP)/polystyrene (PS) blends were investigated. The compounding sequence influences the phase morphology of the ternary CB/PP/PS composites and the distribution of CB aggregates. Simultaneous measurements of resistance and dynamic modulus were carried out to monitor the phase coalescence of the ternary composites and CB migration and agglomeration in the PS phase during annealing at temperatures above the melting point of PP. The variation of resistivity is mainly attributed to CB agglomeration in the PS phase and the interfacial region, while the variation of dynamic modulus is regarded as the superimposition of the phase coalescence and CB agglomeration in the PS phase. The ternary composites with the majority of CB particles distributed in the interfacial region show the lowest conductive percolation threshold and the most stable resistivity–temperature performance during heating–cooling cycles. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The influences of styrene–butadiene–styrene (SBS) copolymer compatibilizer and compounding process on the electrical conduction and thermal stabilities of carbon black (CB)‐filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends were investigated. The immiscible CB/PP/PS composite with CB homogeneously located in the PS phase exhibited the highest resistivity and the fastest variation amplitudes of electrical resistivity (ρ) and rheological parameters upon annealing. An optimal content of 5 vol% SBS could significantly lower ρ of the composites by partially trapping CB particles in the PP/PS interfacial region and by reducing the phase size. The compatibilizer markedly slowed down the variation amplitudes of ρ and rheological parameters and the phase coalescence of the composites submitted to thermal annealing. The (SBS/CB)/PP/PS composite with CB located at the PP/PS interface and in the PP phase prepared by blending a (SBS/CB) masterbatch with PP and PS exhibited lower ρ and better thermal stability in comparison with the CB/SBS/PP/PS composite with CB mainly within the PS phase and partially at the PP/PS interface prepared by direct blending. Spreading and wetting coefficients were used to explain the CB distribution and the phase morphology of the composites. © 2012 Society of Chemical Industry  相似文献   

17.
A maleic anhydride grafted thermoplastic elastomer (TPEg) was prepared. The effect of the TPEg on the morphology and performance of polypropylene (PP)/polyamide 6 (PA‐6) blends was studied. The final properties of the blends were tuned through variations in the TPEg/PA‐6 ratios and TPEg and PA‐6 percentages in the blends. Scanning electron micrographs showed that the TPEg greatly improved the homogeneity of the blends, and this led to better mechanical performance. The nonisothermal crystallization behaviors of PP and PA‐6 in the blends, revealed by differential scanning calorimetry, were different from those of pure PP and PA‐6. The crystallization temperature and rate of PP were promoted by the PA‐6 component because of its nucleating effect, whereas stepwise crystallization was detected for PA‐6 in the PP/PA‐6 blends when the TPEg was added. On the basis of these observations, a schematic model was proposed for these blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1806–1815, 2004  相似文献   

18.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

19.
The intumescent fire retardant polypropylene (IFP/PP) filled with ammonium polyphosphate (APP), melamine (M), and PA6 (charring agent) is discussed. Intumescing degree (ID) and the char yield were determined. Only when the three main components of IFR coexist at appropriate proportions, it has optimal ID and higher char yield. The appropriate proportion is PA6 : APP : M = 10 : 10 : 5. A new compatibilizer, carboxylated polypropylene (EPP), was added to PP/PA‐6 blend. Flow tests indicated that the apparent viscosity increased with the addition of EPP, thermal characterization suggested that EPP has reacted with PA6, PA6‐g‐EPP cocrystallized with PA6, and EPP‐g‐PA6 cocrystallized with PP; SEM micrographs illustrated that the presence of EPP improved the compatibility of PP and PA6. All the investigations showed that EPP was an excellent compatibilizer, and it was a true coupling agent for PP/PA6 blends. Using PA6 as a charring agent resulted in the IFR/PP dripping, which deteriorated the flammability properties. The addition of nano‐montmorillonite (nano‐MMT) as a synergistic agent of IFR enabled to overcome the shortcoming. The tensile test testified that the addition of nano‐MMT enhanced the mechanical strength by 44.3%. SEM showed that nano‐MMT improved the compatibility of the composites. It was concluded that the intumescent system with nano‐MMT was an effective flame retardant in improving combustion properties of polypropylene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 739–746, 2006  相似文献   

20.
The crystallization behavior of polypropylene (PP)/carbon black (CB) and PP/epoxy/CB composites was studied with differential scanning calorimetry (DSC). The effects of compatibilizer MAH‐g‐PP and dynamic cure on the crystallization behavior are investigated. The nonisothermal crystallization parameters analysis showed that CB particles in the PP/CB composites and the dispersed epoxy particles in the PP/epoxy composites could act as nucleating agents, accelerating the crystallization of the composites. Morphological studies indicated that the incorporation of CB into PP/epoxy resulted in its preferential localization in the epoxy resin phase, changing the spherical epoxy particles into elongated structure, and thus reduced the nucleation effect of epoxy particles. Addition of MAH‐g‐PP significantly decreased the average diameter of epoxy particles in the PP/epoxy and PP/epoxy/CB composites, promoting the crystallization of PP more effectively. The isothermal crystallization kinetics and thermodynamics of the PP/CB and PP/epoxy/CB composites were studied with the Avrami equation and Hoffman theory, respectively. The Avrami exponent and the crystallization rate of the PP/CB composites were higher than those of PP, and the free energy of chain folding for PP crystallization decreased with increasing CB content. Addition of MAH‐g‐PP into the PP/epoxy and PP/epoxy/CB composites increased the crystallization rate of the composites and decreased the chain folding energy significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 104–118, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号