首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple melting behaviors and partial miscibility of ethylene‐vinyl acetate (EVA) copolymer/low density polyethylene (LDPE) binary blend via isothermal crystallization are investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). Crystallization temperature T (°C) is designed as 30, 50, 70, 80°C with different crystallization times t (min) of 10, 30, 60, 300, 600 min. The increase of crystallization temperature and time can facilitate the growth in lateral crystal size, and also the shift of melting peak, which means the completion of defective secondary crystallization. For blends of various fractions, sequence distribution of ethylene segments results in complex multiple melting behaviors during isothermal crystallization process. Overlapping endothermic peaks and drops of equilibrium melting points of LDPE component extrapolated from Hoffman–Weeks plots clarify the existence of partial miscibility in crystalline region between EVA and LDPE. WAXD results show that variables have no perceptible influence on the predominant existence of orthorhombic crystalline phase structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Nonisothermal crystallization kinetics of the blends of three ethylene–butene copolymers with LDPE was studied using differential scanning calorimetry (DSC) and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Zc) were determined. It was found that the pure components and the blends have similar Avrami exponents, indicating the same crystallization mechanism. However, the crystallization rate of the blends was greatly influenced by LDPE. The Zc of all the blends first increases with increasing LDPE content in the blends and reaches its maximum, then descends as the LDPE content further increases. The crystallization rate also depends on the short‐chain branching distribution (SCBD) of the ethylene–butene copolymers. The Zc of the pure component with a broad SCBD is smaller, but its blends have a larger crystallization rate due to losing highly branched fractions after blending with LDPE. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 123–129, 2001  相似文献   

3.
A uniaxial tensile test was performed for polycarbonate (PC)/high‐density polyethylene (HDPE)/ethylene–vinyl acetate copolymer (EVA) blends with a fixed EVA content but various PC contents. The double‐yielding phenomenon and its composition dependence, as observed in the PC/HDPE blend, were again detected. EVA did not serve as a successful compatibilizer of PC and HDPE in the PC/HDPE/EVA blend. The incorporation of EVA resulted in a larger size and a more irregular shape of the PC fibers, as indicated in the scanning electron microscope observations; this, consequently, produced a higher serious stress concentration in the blend. This more complicated and instable morphology produced different double‐yielding behaviors in the PC/HDPE/EVA blends compared with the binary one. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The work reported here concerns the peroxide crosslinking of ethylene–vinyl acetate rubber. Calculated values for scission-to-crosslinking ratios are higher for EVA than for low-density polyethylene. In the temperature range from 150 to 200°C at a constant peroxide content, a rise in temperature results in a decrease in the obtained gel content. Some tensile and modulus–temperature results on crosslinked EVA samples are also reported on.  相似文献   

5.
Attempts were made to trace the effect of organoclay (OC) on the rheological and mechanical behaviors of the low density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends. To do this effectively, in addition to LDPE/EVA/OC system, pure LDPE and LDPE/EVA blends were also examined as model systems. The rheological behavior was determined by the capillary rheometer. Morphological characterization was also carried out using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and theoretical approach based on interfacial energies. Shear viscosity, tensile strength and elastic modulus of LDPE/EVA were found to decrease by increasing the EVA content, while for LDPE/EVA/OC ternary nanocomposites, such properties showed an increase by increasing the content of EVA. Such behavior was explained by the morphological characteristic of the system in which OC was mainly intercalated/exfoliated in the EVA phase. This morphological characteristic was corroborated by the XRD, TEM and interfacial energies data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
The conductive blend consisting of ethylene‐vinyl acetate (EVA) and a polyaniline/p‐toluene sulfonic acid (PAn/TSA) complex were prepared by a thermal doping process using a Brabender plasticorder at 150°C. The conductivity, dielectric constant, dissipation factor, mechanical behavior, and structural aspects of these blends were investigated. A higher percentage of the PAn/TSA complex in the EVA matrix resulted in an increase in the electrical properties and a decrease in the mechanical properties like the tensile strength and percentage of elongation. These results were compared with the microcrystalline parameters of the blend obtained from X‐ray profile analysis. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1730–1735, 2002  相似文献   

7.
The aim of this investigation is to evaluate the effect of hot air aging on properties of ethylene‐vinyl acetate copolymer (EVA, 14 wt % vinyl acetate units), ethylene‐acrylic acid copolymer (EAA, 8 wt % acrylic acid units), and their blends. Attenuated total reflection‐Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and mechanical tests are employed to investigate the changes of copolymer blends' structures and properties. Increase of carbonyl index derived from ATR measurements with aging time suggests the incorporation of oxygen into the polymeric chain. By DSC measurements, the enthalpy at low temperature endothermic peak (Tm2) of EAA becomes less and disappears after 8 weeks aging, but enthalpy at Tm2 of EVA is not influenced by the hot air aging and remains stable despite of the aging time. For various proportions of EAA and EVA blends, enthalpy at Tm2 decreases as the EAA proportion increases when aging time is 8 weeks; after several weeks of hot air aging, the various blends appear a same new peak just over the aging temperature 70°C which is due to the completion of crystals which are not of thermodynamic equilibrium state. Mechanical tests show that increase of crystallinity and hot air aging deterioration both have influence on the hardness, tensile strength, and elongation at break. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Alumina trihydrate (ATH) was added to (low‐density polyethylene)/(ethylene‐[vinyl acetate] copolymer) blends (LPEs) to enhance their flame resistance. The addition of substantial amounts of ATH has been known to have deleterious effects on the mechanical properties of such blends. Hence, electron beam irradiation was used to improve the mechanical properties of our ATH‐filled LPE specimens. The specimens were irradiated at 50 to 150 kGy before being cut into specified shapes for analysis. The increase in the irradiation dosage increased the gel content as a result of the formation of crosslinked networks. Also, the flame resistance of the LPE blends was enhanced by increasing both the loading level of ATH and the irradiation dosage. However, a high ATH loading level reduced tensile strength and elongation at break. Nevertheless, the electron beam irradiation maintained the tensile strength and elongation of the ATH‐filled blends. In addition, a higher content of ATH in the LPE blends showed reactive interaction with irradiation effects. A higher amount of ATH reduced the electrical resistivity of the blends, but analysis of their surface and volume resistivity showed that the electrical resistance of the ATH‐filled LPE blends could be improved by electron beam irradiation in the range of 50 to 150 kGy. J. VINYL ADDIT. TECHNOL., 20:91–98, 2014. © 2014 Society of Plastics Engineers  相似文献   

9.
Rubber‐toughened polystyrene (PS) has been extensively studied and is a well‐established material. However, the use of thermoplastic elastomers to toughen PS is new and not well understood. In this study, three types of ethylene vinyl acetate (EVA) copolymers with the same vinyl acetate (VA) content (27.2–28.8 wt %) but with different melt flow indexes (MFI; g (10 min)−1) of 365–440 (Elvax 210), 38.0–48.0 (Elvax 240) and 2.6–3.4 (Elvax 265) were used as impact modifiers for PS. The uncompatibilized blend systems at different compositions were prepared using a twin‐screw extruder and injection moulding to produce the required test pieces. The viscosity of the dispersed phase (EVA) has a significant effect on the mechanical properties of the blends. Rheological studies show that uncompatibilized PS/EVA265 blends exhibit some degree of compatibility when the amount of EVA265 added is below 30 wt %. These results indicate that EVA265 with the lowest melt flow index or highest molecular weight is the most effective impact modifier for PS. The mechanism for such behaviour is still unclear. © 2001 Society of Chemical Industry  相似文献   

10.
Poly(L‐lactide)/ethylene‐co‐vinyl acetate (PLLA/EVA) blends with different contents of Vinyl Acetate (VA) in EVA phase were prepared through melt blending process. Although the composition of the blends was invariant (70/30), different phase morphologies were observed, namely, sea‐island morphologies for the blends with VA contents of 7.5, 18, and 28 wt %, whereas approximate co‐continuous morphology for the blend with VA content of 40 wt % was observed. The interfacial interaction between PLLA and EVA was visualized by Fourier transform infrared and rheological measurements. The nonisothermal and isothermal crystallization behaviors of the blends were investigated by wide angle X‐ray diffraction, Differential scanning calorimetry, and polarization optical microscope. Post‐thermal treatment was applied to improve the crystalline structure of PLLA. The results show that all the samples are mainly in amorphous state during the injection molding process. However, annealing promotes the second crystallization of PLLA matrix, leading to the improvement of the crystalline structure. Especially, the effect of annealing on crystalline structure of PLLA matrix is greatly dependent on the VA content of EVA. As expected, addition of EVA results in the improvement of the ductility and fracture toughness of the blends. The decreased tensile modulus and tensile strength can be enhanced through annealing process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
In order to evaluate the compatibilizing effects of isocyanate (NCO) functional groups on ethylene vinyl alcohol copolymer/high density polyethylene (EVOH/HDPE) blends, HDPE grafted with 2-hydroxyethyl methacrylate-isophorone diisocyanate (HDEP-g-HI) was prepared and blended with EVOH. The grafting was confirmed by infrared spectra, and the grafting ratio was 4.9% from elementary analysis. From the morphologies of EVOH/HDPE-g-HI blends, it was found that an improved adhesion between the two components and finer dispersions were produced as a result of chemical reactions occurring during the melt blending. The depression of melting temperature of EVOH in the 10/90 EVOH/HDPE-g-HI blend indirectly indicated increased miscibility. The tensile strength of the EVOH/HDPE-g-HI blend was much higher than that of the EVOH/HDPE blend having no adhesion at each composition, and a dramatic increase in the impact strength was produced at the 90/10 EVOH/HDPE-g-HI blend composing of the fine HDPE-g-HI dispersions.  相似文献   

12.
The compatibility of low‐density polyethylene and poly(ethylene‐co‐vinyl acetate) containing 18 wt % vinyl acetate units (EVA‐18) was studied. For this purpose, a series of different blends containing 25, 50, or 75 wt % EVA‐18 were prepared by melt mixing with a single‐screw extruder. For each composition, three different sets of blends were prepared, which corresponded to the three different temperatures used in the metering section and the die of the extruder (140, 160, and 180°C), at a screw rotation speed of 42 rpm. Blends that contained 25 wt % EVA‐18 were also prepared through mixing at 140, 160, or 180°C but at a screw speed of 69 rpm. A study of the blends by differential scanning calorimetry showed that all the prepared blends were heterogeneous, except that containing 75 wt % EVA‐18 and prepared at 180°C. However, because of the high interfacial adhesion, a fine dispersion of the minor component in the polymer matrix was observed for all the studied blends with scanning electron microscopy. The tensile strengths and elongations at break of the blends lay between the corresponding values of the two polymers. The absence of any minimum in the mechanical properties was strong evidence that the two polymers were compatible over the whole range of composition. The thermal shrinkage of the blends at various temperatures depended mainly on the temperature and EVA‐18 content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 841–852, 2003  相似文献   

13.
Graphene nanoplatelets coated by polyaniline (GNP@PANI) and ethylene–vinyl acetate (EVA) copolymer–high‐density polyethylene (HDPE) were used for the first time to prepare high‐performance antistatic composites through an effective method that combined solution mixing and melt blending. GNP@PANI nanocomposites were fabricated by in situ polymerization to improve the dispersion of graphene nanoplatelets (GNPs) in the EVA–HDPE matrix and the compatibility between the GNPs and the EVA–HDPE matrix. The GNP@PANI nanocomposites and EVA were first prepared as a premix through solution mixing, and then, the premix and HDPE were prepared as highly antistatic composites through melt blending. The dispersion of the GNPs in the EVA–HDPE matrix and the compatibility between the GNPs and the EVA–HDPE matrix were confirmed by field emission scanning electron microscopy and transmission electron microscopy observations. The GNP@PANI–EVA–HDPE composites met the requirements for antistatic materials when the content of the GNP@PANI nanocomposites was 5 wt % with only about 1 wt % GNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45303.  相似文献   

14.
Electron beam‐initiated crosslinking of films prepared from a blend of low‐density polyethylene (LDPE) and ethylene–vinyl acetate (EVA) containing 45% vinyl acetate, with ditrimethylol propane tetraacrylate (DTMPTA), was carried out over a range of radiation doses (20–500 kGy), concentration of DTMPTA (1–5 parts by weight), and blend compositions. The gel fraction of the films increases with increase in the irradiation dose, DTMPTA level, and EVA content of the blends. The mechanical and dynamic mechanical properties of the films are also changed with the above variables. Reprocessibility studies revealed that the blends irradiated at 50 kGy and below are thermoplastic elastomers with a low permanent set. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1877–1889, 2001  相似文献   

15.
The demand for improved properties of common polymers keeps increasing, and several new approaches have been investigated. In the study reported here, composites with a polymer matrix comprising a blend of high‐density polyethylene with ethylene–vinyl acetate copolymer (EVA), and with polyhedral oligomeric silsesquioxane (POSS) as a nanostructure, were processed and characterized in terms of their thermal and morphological properties. For the preparation of the composites, the concentrations of the blend components (0, 50 and 100 wt%) and of the POSS (0, 1 and 5 wt%) were varied. X‐ray diffraction results indicated that the presence of EVA in the composites led to the appearance of crystalline domains at lower POSS concentrations. Transmission and scanning electron microscopy showed that samples with 1 wt% of POSS had a homogeneous distribution in the polymer matrix with average dimensions of ca 150 nm. However, the formation of aggregates occurred in samples with 5 wt% of POSS. Differential scanning calorimetry and thermogravimetic analyses indicated that the POSS did not affect the melt and degradation temperatures of the polymer matrix. POSS underwent aggregation at higher concentrations during the composite processing, indicating a solubility limit of around 1 wt%. The presence of EVA in the composite favors POSS aggregation due to an increase in the polarity of the polymer matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

17.
A reduction in the glass‐transition temperature (Tg) was found for polyolefins chemically crosslinked by peroxide. This tendency, which was observed for low‐density and high‐density polyethylenes, was also validated for their blends with Ethylene Vinyl Acetate copolymer. It is proposed that the constrained crystallization process, as a result of a restriction imposed on the chain packing by the chemical crosslinks, results in an increasing net free volume in the amorphous phase and hence reduces Tg. The Tg depression becomes greater with increasing crosslink density, whereas at the same time, the degree of crystallinity and consequently the density of the system decreases with an increase in the peroxide content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1654–1660, 2007  相似文献   

18.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   

19.
The rheology, morphology, thermal, mechanical, and adhesive properties of blends containing ethylene–vinyl acetate and metallocene‐catalyzed ethylene–α‐olefin copolymers, containing butene and octene comonomers, were investigated. On the basis of the thermal and rheological properties and scanning electron microscopy observations, we deduced that these blends were immiscible, both in the solid and melt states over the whole range of compositions. Rheological properties were correlated to blend morphology with the Palierne emulsion model. The butene‐based blends had better mechanical properties, which was attributed to their finer morphology, lower interfacial tension, and better adhesive properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 881–889, 2004  相似文献   

20.
Blends of low‐density polyethylene (LDPE) and poly[ethylene‐co‐(vinyl acetate)] (PEVA), crosslinked by electron‐beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB‐exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures, thus supporting the idea that the crosslinking density at a given irradiation dose depends on the amorphous portions of the polymers. Addition of trimethylolpropane trimethacrylate as a radiation sensitizer enhanced the gel content of the neat polyethylene significantly, while the addition of an antioxidant showed the reverse effect. A significant improvement in the tensile strength of the neat PEVA samples was obtained upon EB radiation up to 210 kGy. The irradiated LDPE/PEVA blends showed improved tensile strength and elongation at break when compared to LDPE. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号