首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of the epoxy group in the structure of 1,8‐naphthalimide fluorophores opens up possibilities to prepare compounds with new valued properties through covalent bonding to both polyamide and epoxy oligomers. Two new 4‐(1‐amino‐2,3‐epoxypropyl)‐9‐substituted‐1,8‐naphthalimides were synthesized, and their absorption and fluorescence characteristics were determined. The introduction of the substituent contributes to both the yellow color and strong fluorescence of the compounds, the quantum yield being about 0.9. The possibility for structural coloration of polyamide textile materials and epoxy oligomers has been investigated. The modified polymers are with intense green fluorescence, possessing a strong resistance to various physico‐chemical treatments and light. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1863–1869, 2001  相似文献   

2.
The copolymerization of styrene or methyl methacrylate with 1,8‐naphthalimide dyes to yield fluorescent side‐group copolymers was investigated. During copolymerization, no changes occurred in the chromophoric systems of the dyes. Colorimetrically, it was found that more that 0.90% of the dyes were chemically bonded to the polymer chain. The effect of polymer coloration was proven by appropriate coloristic characterization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2463–2470, 2001  相似文献   

3.
In this project, an eco‐friendly aqueous synthesis method of water‐based polymeric dye (WPD) was developed and its potential as a colorant for waterborne polyurethane (WPU) was tested. The WPD was produced by reacting polyethylenimine with commercial reactive dye in the warm alkaline solution. The colored polyurethane membrane was then produced via solution blending of WPD and WPU, followed by air‐drying. The results showed that WPD with a wide variety of colors can be easily synthesized by selecting different precursory reactive dyes and can be easily blended with WPU via moderate stirring. The colored PU membranes have good transparency and the logo under them can be clearly observed. Compared with the pure polyurethane membrane, the absorbance of colored polyurethane membrane at the wavelength of maximum absorption increases at least 20.2% even if the content of WPD within the colored polyurethane membrane is as low as 0.16%, implying that our WPD has excellent color strength. Finally, the colored polyurethane membranes have very high colorfastness to water and can be stored in deionized water for 2 weeks without dissolution of WPD. As a result, our developed WPD is a promising and cost‐effective colorant for WPU. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44710.  相似文献   

4.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

5.
A novel fluorescent coloured copolymer based on naphthalimide was prepared. Acenaphthene was brominated and oxidised to prepare 4‐bromo‐1,8‐naphthalic anhydride and further reacted with butanethiol, 2‐aminoethanol and acryloyl chloride, in order to obtain a new polymerisable fluorescent dye. The synthesised dyes were characterised by differential scanning calorimetry, absorption spectroscopy (Fourier Transform–infrared, proton and carbon nuclear magnetic resonance, ultraviolet–visible spectroscopy) and fluorimetry. Molar extinction coefficients and wavelength maxima were obtained by examining the dye solution in ethanol. The solvatochromic effects of the prepared dyes have also been investigated. Finally, the dye was copolymerised with methyl methacrylate and an intrinsically coloured copolymer was obtained. The photophysical characteristics of the obtained copolymer have also been considered. It is assumed that 99% of the copolymerised dye is chemically bonded to polymer chains. The fluorescent characteristics of the copolymer in the solid state were determined by fluorometer and it was found that it has relatively high fluorescent intensity. The physical properties of the synthesised copolymer have been evaluated by differential scanning calorimetry and gel permeation chromatography.  相似文献   

6.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Six new fluorescent derivatives of 1,8‐naphthalimide were synthesized. Three were dyes, and three were fluorescent whitening agents (FWAs) containing a tetramethylpiperidine (TMP) stabilizer fragment. The FWAs were obtained under phase‐transfer catalysis conditions. Five of the compounds were copolymerized with methyl methacrylate, so copolymers with an intense color and/or fluorescence stable against solvents were obtained. The chemical bonding of the synthesized monomers in the polymers was confirmed spectrophotometrically. The participation of the monomer compounds did not significantly affect the process of copolymerization or the molecular masses of the obtained copolymers. The quantity of chemically bonded naphthalimide monomer in the copolymers was determined to be over 60%. The spectral properties of the compounds and their photostability in solution and in the copolymers were studied. The influence of the compounds on the photostability of the copolymers was determined. The compounds, especially those containing a stabilizer (TMP) fragment in their molecules, showed a positive stabilizing effect on the photodegradation of poly(methyl methacrylate). Polyamide fabrics with 2‐allyl‐6‐hydrazino‐benzo[de]isoquinoline‐1,3‐dione, 2‐allyl‐6‐(2‐amino‐ethylamino)‐benzo[de]isoquinoline‐1,3‐dione, and 2‐chloro‐N′‐(2‐methyl)‐1,3‐dioxo‐2,3‐dihydro‐1H‐benzo[de] isoquinoline‐6‐yl) acetohydrazide were dyed, and materials with an intense yellow color and fluorescence were obtained. Cotton fabrics were whitened with 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐methoxy‐benzo[de]isoquinoline‐1,3‐dione, 2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐6‐allyloxybenzo[de]isoquinoline‐1, 3‐dione, and 2‐[2‐(2,2,6,6‐tetramethyl‐piperidin‐4‐yl)‐1,3‐dioxo‐2,3‐dihidro‐1H benzo [de]isoquinoline‐6‐oxy]ethyl‐2‐methacrylate, and materials with bright whiteness and intense bluish fluorescence were obtained. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006  相似文献   

9.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

10.
11.
4‐(N,N‐Diallylamino)pyridine (DAAP), N,N‐diallylaminobenzene (DAAB), N,N,N′,N′‐tetrallyl‐4,4′‐diaminobenzidine (AAB), N,N,N′,N′‐tetrallyl‐4,4′‐diaminodiphenyl sulfone (AABS), and N,N,N′,N′‐tetrallyl‐4,4′‐diaminodiphenyl ether (AABE) were prepared by sodium substitution and N‐allylation. Moreover, linear polyDAAP, poly(DAAP‐co‐DAAB), and network poly(DAAP‐co‐AAB), poly(DAAP‐co‐AABS), and poly(DAAP‐co‐AABE), all being polymers containing supernucleophilic groups, were synthesized in the cyclopolymerization. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 363–367, 2000  相似文献   

12.
Crosslinked castor oil (CO)‐based waterborne polyurethane was synthesized from CO, polycarbonate diol, isophorone diisocyanate, 2,2‐dimethylol propionic acid, and 2‐amino‐2‐(hydroxymethyl)‐1,3‐propanediol (THAM) using pre‐polymer process. Fourier transform infrared spectroscopy, X‐ray diffraction, and transmission electron microscopy were utilized to characterize the above‐synthesized polyurethane. The effect of THAM content was studied on particle size, zeta potential, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and contact angle measurement. Results showed that, with the increase of THAM content, the particle size increases and the thermal stability increases. Furthermore, as the THAM content increased from 0% to 1.5%, tensile strength increased from 9.5 to 16.3 MPa, contact angle increased from 67.8° to 87.4°, and bibulous rate decreased from 13.4% to 6.1%, the elongation at break dropped from 154.8% to 37.9%, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45532.  相似文献   

13.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

14.
A novel soybean oil‐based vinyl‐containing waterborne polyurethane (VPU) dispersion has been successfully synthesized from toluene 2,4‐diisocyanate, dimethylol propionic acid and a 90 : 10 mixture of chlorinated soybean oil‐based polyol and acrylated epoxidized soybean oil (AESO). Then, a series of VPU/acrylic grafted latices have been prepared by emulsion graft copolymerization of acrylic monomers (40 wt % butyl acrylate and 60 wt % methyl methacrylate) in the presence of the VPU dispersion, using potassium persulfate as an initiator. The structure, morphology, and thermal and mechanical properties of the resulting latices, containing 15–60 wt % soybean oil‐based polyols as a renewable resource, have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, transmission electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, and mechanical testing. The results indicate that graft copolymerization of the acrylic monomers onto the VPU network occurs during emulsion polymerization, leading to a significant increase in the thermal stability and mechanical properties of the resulting miscible grafted latices. This work provides new environmentally‐friendly latices from a renewable resource with high performance for coating applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
α‐Butyl‐ω‐N,N‐dihydroxyethylaminopropylpolydimethylsiloxane, a monotelechelic polydimethylsiloxane with a diol‐end group, which is used to prepare polyurethane–polysiloxane graft polymer, was successfully synthesized. The preparation included five steps, which are hydroxyl protection, alkylation, anionic ring‐opening polymerization, hydrosilylation, and deprotection. The products were characterized by FTIR, GC, LC‐MS, 1H NMR, and elemental analysis. The results showed that each step was successfully carried out and the targeted products were synthesized in all cases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
End‐functionalized polystyrene (PSt) was synthesized via atom‐transfer radical polymerization (ATRP) by using 4‐chloromethyl benzoic acid (CMBA) and the ethyl‐protected carboxylic acid, ethyl 4‐chloromethybenzenecarboxylate (ECBC), as initiators respectively. The structure of PSt proved the living‐radical polymerization. Results exhibit both ATRP initiators afforded well‐controlled polymerization with high initiator efficiencies. However, the study also shows the controllability of ATRP can be obviously influenced by using different initiator in different catalyst system. Furthermore, the terminal group of the PSt1, benzoic acid, can coordinate with Europium(III) ion to obtain the polymeric Eu(III) complex, which shows both emissions of polymer and Eu(III) ion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Copolymers of 2,3,4,5,6‐pentafluorostyrene (PFS) having a combination of high hydrophobicity and high glass transition temperature (Tg) are reported here for the first time. The copolymerization was carried out using N‐phenylmaleimide (NPM) as the comonomer and azobisisobutyronitrile (AIBN) as the initiator under both conventional thermal heating and microwave heating. The initial copolymerization rate was found to be higher under microwave heating than under thermal heating. The copolymerization parameters were determined using the Fineman–Ross method and were found to be r1 (NPM) = 0.28 and r2 (PFS) = 0.86. Increased incorporation of NPM in the copolymers led to an increase in Tg of the copolymers without significantly affecting the hydrophobicity of poly(2,3,4,5,6‐pentafluorostyrene). Thermal stability of the copolymers is also reported. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Traditional treatment systems failed to achieve efficient degradation of anthraquinone dye intermediates at high loading. Thus, an airlift internal loop reactor (AILR) in combination with the TiO2‐photocatalytic ozonation (TiO2/UV/O3) process was investigated for the degradaton of 1‐amino‐ 4‐bromoanthraquinone‐2‐ sulfonic acid (ABAS). RESULTS: The AILR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as biocarrier, could run steadily for 4 months at 1000 mg L?1 of the influent ABAS. The efficiencies of ABAS decolorization and chemical oxygen demand (COD) removal in AILR reached about 90% and 50% in 12 h, respectively. However, when the influent ABAS concentration was further increased, a yellow intermediate with maximum absorbance at 447 nm appeared in AILR, resulting in the decrease of the decolorization and COD removal efficiencies. Advanced treatment of AILR effluent indicated that TiO2/UV/O3 process more significantly improved the mineralization rate of ABAS bio‐decolorization products with over 90% TOC removal efficiency, compared with O3, TiO2/UV and UV/O3 processes. Furthermore, the release efficiencies of Br? and SO42? could reach 84.5% and 80.2% during TiO2/UV/O3 treatment, respectively, when 91.5% TOC removal was achieved in 2 h. CONCLUSION: The combination of AILR and TiO2/UV/O3 was an economic and efficient system for the treatment of ABAS wastewater. © 2012 Society of Chemical Industry  相似文献   

19.
Electrochemical copolymerization of a binary mixture of pyrrole and 2‐amino‐4‐phenylthiazole on platinum electrode in acid medium was carried out. The kinetic parameters were calculated using ex situ microgravimetric and electrochemical data. The experimentally obtained kinetic equations were RP,W = kW [acid]1.16 [monomer]1.85 from microgravimetric data and RP,E = kE [acid]1.1 [monomer]1.9 from the values of the anodic current density using cyclic voltammetry technique. The apparent activation energy was calculated by the two techniques and is found to be 32.55 and 29.6 kJ/mol from microgravimetric and electrochemical data respectively. The monomer reactivity ratios (r1 and r2) were calculated according to Fineman–Ross method and the copolymer structure was determined from the obtained data, which is found to be a block copolymer structure. The applications of the prepared copolymer as corrosion protection of mild steel in acid medium are studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4047–4058, 2007  相似文献   

20.
An efficient synthesis of optically pure cis‐4‐formyl‐β‐lactams (up to 99% ee) by a chiral NHC‐catalyzed ring expansion reaction has been realized, featuring the ready availability of both the substrate and the catalyst, and the mild reaction conditions. The current method is also suitable for the synthesis of enantioenriched 4‐formyl‐β‐lactams and succinimides containing quaternary carbon centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号