首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tunable starch‐based hydrogel was prepared by crosslinking unsaturated macromonomers in the presence of H2S. First, well‐defined poly(vinyl alcohol) (PVA) was prepared by alcoholysis of poly(vinyl acetate) obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization of vinyl acetate. Subsequently, carbon‐carbon double bonds were incorporated onto PVA through esterification with maleic anhydride. Finally, the hydrogel was formed via concurrent electrophilic addition and thiol‐ene reaction between starch maleic half‐ester, unsaturated PVA and H2S using potassium persulfate as initiator at 60 °C. Elemental analysis showed the percentage of sulfur in the gel ranged from 0.86% to 1.73%, depending on the chain length of PVA. The storage modulus, loss modulus and glass transition temperature of the networks varied from 12.7 to 50.9 MPa, from 3.7 to 15.7 MPa and from 57.0 to 71.8 °C, respectively. Both the swelling and release behavior of the gels were also modulated by changing the unsaturated PVA component. © 2012 Society of Chemical Industry  相似文献   

2.
A novel poly(ester‐urethane) with tailor‐made structure was prepared by using lactic acid (LA) as starting material through a combination of two facile common reactions. First, a diol was prepared via the esterification between LA and poly(ethylene glycol) (PEG) with low molecular weight. Subsequently, the poly(ester‐urethane) was synthesized through the addition polymerization of the LA‐based diol and toluene 2,4‐diisocyanate with 1,4‐butanediol as chain extender. The structure, morphology, and properties of intermediate and the poly(ester‐urethane) were analyzed with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography (GPC), X‐ray diffraction, differential scanning calorimetry, polarizing optical microscopy, and thermogravimetric analysis. The results indicated that the intermediate was a diol of conjugating quite short lactate sequences with PEG oligomer, and the structure of the poly(ester‐urethane) was as expected. The thermal transition, thermal decomposition temperature, and crystallinity of the polymer samples depended on the molecular size of PEG. In vitro degradation property of the poly(ester‐urethane) also relied on the molecular weight of PEG. The weight loss percentages varied from 11 to 36% after 12‐days immersing in phosphate‐buffer saline at 37°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Low back pain caused by intervertebral disc degeneration is one of the most common spinal disorders among patients seeking medical treatment. The most common surgical treatments are spinal fusion and total disc arthroplasty, both of which are very invasive surgical procedures. Nucleus pulposus replacement is an earlier stage intervention for disc degeneration. One of the material classes being studied for this application is hydrogels: a three‐dimensional hydrated network of polymer(s), which mimics the mechanical and physiological properties of the nucleus. Poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and poly(ethylene glycol) (PEG) hydrogels have previously been shown to be great candidate materials for injectable nucleus pulposus replacement, but have experienced issues with swelling and mass retention. The addition of chemical crosslinking to the PVA/PVP/PEG hydrogel system will allow tailoring of the swelling, mechanical, injectability, and mass loss properties of the hydrogel network. Two chemical crosslinking methods were evaluated for the PVA/PVP/PEG hydrogel system by characterizing the hydrogels with compression, swelling, and spectroscopy experiments. The results of these experiments led to the selection of the difunctional crosslinking strategy using PEG functionalized with terminal epoxide group (PEG diglycidyl ether) as the preferred crosslinking method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40843.  相似文献   

4.
Poly(vinyl alcohol) (PVA) was chosen as a controllable gelator to prepare sodium alginate (SA)‐based physically cross‐linked dual‐responsive hydrogel by three steps. First, polyvinyl acetate (PVAc) was grafted onto SA via radical copolymerization. Then, the copolymer was subsequently converted into SA‐g‐poly(vinyl alcohol) (SAPVA) by alcoholysis reaction. PVA content of SAPVA was tailored by controlling the graft percentage of PVAc, i.e. through varying the amount of vinyl acetate during copolymerization. Finally, SAPVA hydrogels were formed by freezing‐thawing cycles. The structure of the graft copolymers was verified with FTIR spectroscopy. X‐ray diffraction analysis results revealed that the crystallinity of SAPVA hydrogels depended on the PVA content of SAPVA. The swelling test showed that SAPVA hydrogels were pH‐responsive, and the swelling was reversible. SAPVA hydrogels also behaved electric‐responsive. In addition, the pH‐sensitivity of SAPVA hydrogels was able to be controlled with the composition of the hydrogels. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Novel double‐network (DN) hydrogels with high mechanical strength have been fabricated with two biocompatible polymers, poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG), through a simple freezing and thawing method. Some properties of the obtained hydrogels, such as the mechanical strength, rheological and thermodynamic behavior, drug release, and morphology, have been characterized. The results reveal that in sharp contrast to most common hydrogels made with simple natural or synthetic polymers, PVA/PEG hydrogels can sustain a compressive pressure as high as several megapascals, highlighting their potential application as biomedical materials. In addition, a model for describing the structural formation of PVA/PEG DN hydrogels is proposed: the condensed PVA‐rich phase forms microcrystals first, which bridge with one another to form a rigid and inhomogeneous net backbone to support the shape of the hydrogel, and then the dilute PEG‐rich phase partially crystallizes among the cavities or voids of the backbone; meanwhile, there are entanglements of molecular chains between the two polymers. Moreover, a mechanism is also proposed to explain the high mechanical strength of PVA/PEG DN hydrogels. It is suggested that the free motion of PEG clusters in the cavities of PVA networks can prevent the crack from growing to a macroscopic level because the linear PEG chains in the cavities effectively absorb the crack energy and relax the local stress either by viscous dissipation or by large deformation of the PEG chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Poly(vinyl alcohol) (PVA) hydrogels have shown potential applications in bionic articular cartilage due to their tissue-like viscoelasticity, good biocompatibility and low friction. However, their lack of adequate mechanical properties is a key obstacle for PVA hydrogels to replace natural cartilage. In this study, poly(ethylene glycol) (PEG) and glycerol were introduced into PVA, and a PVA/PEG–glycerol composite hydrogel was synthesized using a mixing physical crosslinking method. The mechanical properties, hydrophilicity and tribological behavior of the PVA/PEG–glycerol hydrogel were investigated by changing the concentration of glycerol in PEG. The results showed that the tensile strength of the hydrogel reached 26.6 MPa at 270% elongation at break with 20 wt% of glycerol plasticizer, which satisfied the demand of natural cartilage. In addition, the excellent hydrophilicity of glycerol provides good lubricating properties for the composite gel under dry friction. Meanwhile, self-healing and cellular immunity assays demonstrated that the composite gel could have good self-healing ability and excellent biocompatibility even in the absence of external stimuli. This study provides a new candidate material for the design of articular cartilage, which has the potential to facilitate advances in artificial joint cartilage repair. © 2022 Society of Industrial Chemistry.  相似文献   

7.
A series of hybrid hydrogels based on poly(vinyl alcohol) (PVA)/agar/poly(ethylene glycol) (PEG) prepared by a solution casting method using e‐beam irradiation are investigated to determine the effect of agar and PEG content (1, 2, and 4 wt%) on their physicomechanical and rheological properties. The gel content of the hydrogels decreases with increasing agar and PEG contents. The equilibrium swelling of PVA hydrogel decreases on blending with agar while adding PEG to PVA/agar increases the swelling by about 400%. No obvious change in the dehydration behavior of the hybrid hydrogels is observed on changing agar and PEG contents. The solid‐like rheological behavior of the hydrogels is not significantly affected by agar content, while it approaches a liquid‐like behavior at high PEG loading. The tensile strength of the hybrid hydrogels is improved by increasing agar content, while its elongation‐at‐break is decreased. On the other hand, the opposite results are found regarding the influence of PEG and its content on the mechanical properties of the hybrid hydrogels.

  相似文献   


8.
首先以蒽甲醛和聚乙烯醇(PVA)为原料、二甲基亚砜(DMSO)为溶剂、对甲苯磺酸(TsOH)为催化剂,反应得到蒽接枝改性聚乙烯醇(AnPVA)。然后利用混合溶剂凝胶法制备AnPVA水凝胶。通过差示扫描量热法(DSC)、拉伸等测试,研究水凝胶的力学等性能。结果表明,相比于纯PVA水凝胶,AnPVA水凝胶的力学性能得到了显著提高,在水凝胶中引入疏水基团是一种十分有效提高水凝胶力学性能的手段。AnPVA水凝胶浸泡于水中加热后无明显溶胀,有着优异的耐热和耐水性能,并且该水凝胶是物理交联网络,有着良好的循环重塑性能。  相似文献   

9.
A wood pulp cellulose‐based hydrogel material was prepared with poly(methyl vinyl ether‐co‐maleic acid) (PMVEMA), polyethylene glycol (PEG), and softwood ECF kraft pulp via microwave and thermal esterification and compared via hydrogel absorption and retention of water and 0.10M NaCl. The microwave initiated reaction time was optimized to 105 s at 1600 W based on maximum water absorption of 96 g/g of the 49% PMVEMA pulp hydrogels. The influence of reaction variables such as pulp fiber size and the weight ratios of PMVEMA to pulp were investigated. The maximum water absorbency of the milled pulp fibers microwave initiated products was 151 g/g, whereas the maximum water absorbency of the milled pulp fibers thermally initiated hydrogels was 198 g/g. In addition, the microwave initiated hydrogels retained a maximum of 67% of absorbed water after centrifugation at 770 rpm for 10 min, whereas the thermally initiated hydrogels retained a maximum of 49% of water absorbed. Fourier transform infrared spectroscopy (FTIR) was used to confirm the esterification of the PMVEMA with the pulp cellulose. Microwave initiated crosslinking successfully produced a pulp hydrogel with a shorter reaction time and comparable or improved water absorption and retention properties when compared with the traditional thermally crosslinked pulp hydrogel system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Poly(vinyl alcohol) (PVA) was modified with phthalic and succinic anhydrides to give vinyl alcohol–vinyl ester copolymers that contain carboxylate groups. These half‐esters were then crosslinked by using the poly‐ (ethylene glycol) (PEG) 400 diglycidylether. Low crosslinker/carboxylate ratios were used to obtain low degrees of crosslinking, so the capacity of the resulting hydrogel to absorb water was high. Water absorption was determined gravimetrically as a function of time at room temperature. The equilibrium swelling ratio and compressive modulus were characterized for all the resulting PVA hydrogels and related to the network structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3026–3031, 2003  相似文献   

11.
The purpose of this study is to develop novel poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogel blends and PVA-derived organic-inorganic hybrid materials and perform nanostructural characterizations. PVA and PEG hydrogels were prepared by dissolving the polymer in aqueous solution, followed by addition of glutaraldehyde (GA) chemical crosslinker. Hybrids were synthesized by reacting PVA in aqueous solution with tetraethoxysilane (TEOS). PVA/TEOS were also modified in the nanometer-scale by crosslinking with GA during the synthesis reaction. Hydrogels and hybrids were characterized by using small-angle X-ray scattering synchrotron radiation (SAXS) and Fourier transform infrared spectroscopy (FTIR). Thin film samples were prepared for SAXS experiments. SAXS results have indicated different nano-ordered disperse phases for hydrogels made of PVA, PEG, PVA/GA, PVA/PEG. Also, PVA/TEOS and PVA/TEOS/GA hybrids have indicated different X-ray scattering patterns. FTIR spectra have showed major vibration bands associated with organic-inorganic chemical groups present in the hybrid nanocomposites PVA/TEOS and PVA/TEOS/GA. PVA/PEG hydrogels and PVA-derived hybrid materials were successfully produced with GA crosslinking in nanometer-scale network.  相似文献   

12.
Injectable hydrogel formulations that undergo in situ gelation at body temperature are promising for minimally invasive tissue repair. This work focuses on the investigation of injectable poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG) mixtures. The injectable PVA–PEG aqueous solutions form a hydrogel as temperature is reduced to near body temperature, while filling a defect in the injection site. Gamma sterilization of these solutions compromises injectability presumably due to crosslinking of PVA. We hypothesized that by modifying the PEG molecular weight and its concentration, injectability of radiation sterilized PVA–PEG hydrogels can be optimized without compromising the mechanical properties of the resulting gel. The use of a bimodal mixture of higher and lower molecular weight PEG (600 and 200 g/mol) resulted in lower PVA/PEG solution viscosity, better injectability, and higher gel mechanical strength. The PVA/bimodal-PEG had a lower viscosity at 2733 ± 149 cP versus a viscosity of 5560 ± 278 cP for PVA/unimodal-PEG (400 g/mol). The gel formed with the bimodal PEG mixture had higher creep resistance (61% total creep strain under 0.5 MPa) than that formed with unimodal PEG (84%). These hydrogel formulations are promising candidates for minimally invasive tissue repair. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Atactic poly(vinyl alcohols) (a‐PVAs) having number‐average degrees of polymerization [(Pn)s] of 1700 and 4000 were prepared by the solution polymerization of vinyl acetate, which was followed by the saponification of poly(vinyl acetate) to investigate the effects of molecular weights of a‐PVA on the characteristics of electrospun a‐PVA nanofabrics. A‐PVA nanofabrics were prepared by electrospinning with controlling the process parameters including the electrical field, conductivity, tip‐to‐collector distance, and solution concentration. Through a series of characterization experiments, we identified that the molecular weight of a‐PVA had a marked influence on the structure and properties of nanofabrics produced. That is, the higher the molecular weight of PVA, the superior the physical properties of PVA nanofabric. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1638–1646, 2004  相似文献   

14.
An “off‐the‐shelf” hydrogel with high‐efficiency shape memory property is designed on the basis of the dynamic borax‐diol chemistry. The system is facilely prepared from only several unmodified commercially available components: acrylamide (AAm), bis‐acrylamide (Bis), poly(vinyl alcohol) (PVA), and borax. The chemically crosslinked poly(acrylamide) network works to fix the permanent shapes of the hydrogel, while the dynamic PVA–borax boronate ester bonds serve as the reversible crosslinks to memorize the deformed temporary shapes. Retreatment of the hydrogel in acid/glucose solutions dissipates the PVA–borax ester bonds to recover its permanent shape. Because of the highly invertible nature of borax‐diol chemistry, the developed hydrogel system is characterized by high shape memory/recovery ratios, continuously adjusted shape memory/recovery rates, thus having a wealth of potential applications.  相似文献   

15.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
In this work, we present the synthesis and characterization of chemically crosslinked polyurethanes (PU) composed of poly(ethylene glycol) (PEG) and poly(caprolactone) diol (PCL‐diol), as hydrophilic and hydrophobic segments respectively, poly(caprolactone) triol (PCL‐triol), to induce hydrolysable crosslinks, and hexamethylene diisocyanate (HDI). The syntheses were performed at 45 °C, resulting in polyurethanes with different PEG/PCL‐diol/PCL‐triol mass fractions. All the PUs are able to crystallize and their thermal properties depend on the global composition. The water uptake capacities of the PU increase as the PEG amount increases. The water into hydrogels is present in different environments, as bounded, bulk and free water. The PU hydrogels are thermo‐responsive, presenting a negative dependence of the water uptake with the temperature for PEG rich networks, which gradually changes to a positive behavior as the amount of poly(caprolactone) (PCL) segments increases. However, the water uptake capacity changes continuously without an abrupt transition. Scanning electron microscopy (SEM) analyses of the hydrogel morphology after lyophilization revealed a porous structure. Mechanical compression tests revealed that the hydrogels present good resilience and low recovery hysteresis when they are subject to cycles of compression–decompression. In addition, the mechanical properties of the hydrogels varies with the composition and crosslinking density, and therefore with the water uptake capacity. The PU properties can be tuned to fit for different applications, such as biomedical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43573.  相似文献   

17.
The poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVA–PVP) hydrogels containing silver nanoparticles were prepared by repeated freezing–thawing treatment. The silver content in the solid composition was in the range of 0.1–1.0 wt %, the silver particle size was from 20 to 100 nm, and the weight ratio of PVA to PVP was 70 : 30. The influence of silver nanoparticles on the properties of PVA–PVP matrix was investigated by differential scanning calorimeter, infrared spectroscopy and UV–vis spectroscopy, using PVA–PVP films containing silver particles as a model. The morphology of freeze‐dried PVA–PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three‐dimensional structure was formed during the process of freezing–thawing treatment and no serious aggregation of the silver nanoparticles occurred. Water absorption properties, release of silver ions from the hydrogels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver‐containing hydrogels had an excellent antibacterial ability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 125–133, 2007  相似文献   

18.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

19.
张平  兰延勋  吕满庚 《精细化工》2007,24(12):1158-1162
为了得到具有高强度和高溶胀率的纳米水凝胶(NCgels),N-异丙基丙烯酰胺通过可逆加成断裂链转移(RAFT)聚合的方法,插层在含有质量分数为0.25%~15%的可扩展的有机化的蒙脱土(Clay-S)层间并交联。结果表明,与传统水凝胶相比,该水凝胶的强度和溶胀性能得到了很大提高,并且对温度的变化具有较快的响应速率。以质量分数为5%的蒙脱土,链转移剂的质量分数为0.5%制备的纳米水凝胶为例,该水凝胶在20℃的溶胀率为450,而传统水凝胶在相同温度时的溶胀率仅为20;该水凝胶在1min内失去75%的水,在4min内失去约90%的水,而传统水凝胶在15min内仅失去66%左右的水。  相似文献   

20.
A novel poly(ethylene glycol) (PEG) macromer with a methacryloyl and sulfonic acid group at each end of the chain was prepared. Modified hydroxyethyl methacrylate (HEMA) based hydrogels were synthesized by crosslinking polymerization of HEMA in the presence of the above‐mentioned PEG macromer. The effect of the sulfonated PEG graft was examined by comparing the swelling properties with those of a pure poly(hydroxyethyl methacrylate) (PHEMA) hydrogel. The modified PHEMA hydrogel exhibited increasing water absorbency with increasing sulfonated PEG content up to 15 wt %. These hydrogels with the sulfonated PEG graft exhibited a more hydrophilic character than the pure PHEMA gel. Also the swelling degree varied slightly with pH, showing increased swelling at higher pH probably due to the presence of the anionic sulfonate group on the PEG end chain. In addition, the protein adsorption test showed a lower level of fibrinogen adsorption from the sulfonated poly(ethylene glycol) (SPEG) modified gel than on the homo PHEMA hydrogel. Interestingly, scanning electron microscopy showed that the porous and rather uniform morphology of the gels changed with increasing sulfonated PEG content in PHEMA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2484–2489, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号