首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence and possible contribution of intrinsic membrane potential oscillations to the generation of locomotor rhythmicity was investigated in spinal cord neurons of newly hatched Rana temporaria tadpoles, by intracellular recording from immobilized animals. The bath application of 100 microM N-methyl-D-aspartate (NMDA) evoked continuous swimming-like activity in ventral motor roots and rhythmic synaptic drive to ventrally located spinal neurons, presumed to be motoneurons. In 0.5 microM tetrodotoxin-treated preparations, similar applications of NMDA depolarized neurons by ca. 20 mV, but did not lead to intrinsic oscillatory activity, although some evidence for voltage-dependent membrane bi-stability was obtained. However, bath application of the neuromodulatory amine, serotonin (5HT; 5 microM), in the presence of NMDA and TTX, reversibly induced sustained membrane potential oscillations (up to 40 mV in amplitude) that were similar in waveform to those already described in other adult vertebrate motor systems. The TTX-resistant oscillations were dependent upon the presence of magnesium ions in the bathing solution and were abolished by the NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV). The results suggest that in this simple, developing vertebrate locomotor system, the activation of 5HT receptors on spinal cord neurons in turn modulates NMDA receptor activation to enable the expression of intrinsic oscillatory membrane properties which could contribute to the generation of locomotor behaviour.  相似文献   

2.
These studies examined the role of spinal N-methyl-D-aspartic acid (NMDA) receptors in mediating sympathoexcitation evoked by stimulation of neurons in the rostral ventrolateral medulla (RVLM). In urethane-anesthetized rats, blood pressure, heart rate, and splanchnic sympathetic nerve activity (SNA) were recorded. The NMDA receptor antagonist D-2-amino-7-phosphonoheptanoic acid (D-AP7) was administered to the spinal cord via intrathecal (IT) catheter. Blockade of spinal NMDA receptors reduced arterial blood pressure, heart rate, and SNA. Spinal administration of D-AP7 markedly attenuated the pressor and sympathoexcitatory responses evoked by L-glutamate stimulation of the RVLM. The small increases in heart rate evoked by stimulation of the RVLM were not affected by IT administration of D-AP7. These results indicate that NMDA receptors in the spinal cord mediate the pressor and sympathoexcitatory responses evoked by activation of a bulbospinal pathway originating from the RVLM. Moreover, these data suggest that excitatory amino acid neurotransmitters and NMDA receptors in the spinal cord play an important role in the maintenance and regulation of SNA and cardiovascular function.  相似文献   

3.
Using decerebrate frogs (Rana catesbeiana), we investigated the role of vagal and laryngeal sensory feedback in controlling motor activation of the larynx. Vagal and laryngeal nerve afferents were activated by electrical stimulation of the intact vagal and laryngeal nerves. Pulmonary afferents were activated by lung inflation. Reflex responses were recorded by measuring efferent activity in the laryngeal branch of the vagus (Xl) and changes in glottal aperture. Two glottic closure reflexes were identified, one evoked by lung inflation or electrical stimulation of the main branch of the vagus (Xm), and the other by electrical stimulation of Xl. Lung inflation evoked a decrementing burst of Xl efferent activity and electrical stimulation of Xm resulted in a brief burst of Xl action potentials. Electrical stimulation of Xl evoked a triphasic mechanical response, an abrupt glottal constriction followed by glottal dilatation followed by a long-lasting glottal constriction. The first phase was inferred to be a direct (nonreflex) response to the stimulus, whereas the second and third represent reflex responses to the activation of laryngeal afferents. Intracellular recordings of membrane potential of vagal motoneurons of lung and nonlung types revealed EPSPs in both types of neurons evoked by stimulation of Xm or Xl, indicating activation of glottal dilator and constrictor motoneurons. In summary, we have identified two novel reflexes producing glottic closure, one stimulated by activation of pulmonary receptors and the other by laryngeal receptors. The former may be part of an inspiratory terminating reflex and the latter may represent an airway protective reflex.  相似文献   

4.
To determine the role of excitatory amino-acid (EAA) receptors in afferent evoked excitation of neurons in the nucleus of the solitarius (NTS), responses of NTS neurons to activation of visceral afferent inputs were examined before and during iontophoretic application of the broad spectrum EAA receptor antagonist kynurenate (KYN). Iontophoretic application of KYN, at doses which attenuated glutamate but not substance P or acetylcholine evoked discharge, inhibited carotid sinus nerve (CSN) and vagus nerve evoked discharge. KYN attenuation of evoked responses was similar whether the evoked input was monosynaptic (CSN evoked discharge reduced by 50 +/- 6% (mean +/- SE; n = 5); vagus nerve evoked discharge reduced by 45 +/- 4%, n = 6) or polysynaptic (CSN evoked discharge reduced by 48 +/- 6%, n = 6; vagus nerve evoked discharge reduced by 43 +/- 3%, n = 8). Spontaneous action potential discharge rate was reduced during KYN iontophoresis in 6 cells (1.8 +/- 0.4 spikes/s vs. 0.7 +/- 0.2 spikes/s). Iontophoretic application of a structural analogue of KYN which has no EAA receptor antagonist properties, xanthurenic acid, had no effect on glutamate, CSN or vagus nerve evoked discharge. Iontophoretic application of KYN reduced the action potential discharge evoked by activation of the carotid body chemoreceptors by 52 +/- 2% in 5 cells tested. The results demonstrate that excitatory amino-acid receptors are involved in visceral afferent evoked activation of NTS neurons. Furthermore, since both mono- and poly-synaptic inputs were attenuated, these receptors appear to be utilized at multiple levels of afferent integration within NTS.  相似文献   

5.
The isolated, in vitro whole brain of guinea-pig was used to assess some of the main physiological and pharmacological properties of the vestibulo-ocular pathways in this species. Extracellular and intracellular recordings were obtained from the vestibular, abducens and oculomotor nuclei, as well as from the abducens and oculomotor nerves, while inputs from the vestibular afferents, the visual pathways and the spinal cord were activated. The three main types of medial vestibular nucleus neurons (A, B and B+LTS), previously described on slices, were also identified in the isolated brain. They had similar membrane properties in both preparations. Eighty-five per cent of cells recorded in the vestibular nucleus responded with monosynaptic, excitatory postsynaptic potentials (latency 1.05-1.9 ms) to stimulation of the ipsilateral vestibular nerve, and were thus identified as second-order vestibular neurons. In addition, stimulation of the contralateral vestibular afferents revealed in most cases a disynaptic or trisynaptic, commissural inhibition. Second-order vestibular neurons displayed in the isolated brain a high degree of variability of their spontaneous activity, as in alert guinea-pigs. Type A neurons always exhibited a regular firing, while type B and B+LTS cells could have very irregular patterns of spontaneous discharge. Thus, type A and type B neurons might correspond, respectively, to the tonic and phasic vestibular neurons described in vivo. The regularity of spontaneous discharge was positively correlated with the amplitude of spike after hyperpolarization, and there was a trend for irregular neurons to be excited from ipsilateral vestibular afferents at shorter latencies than regular units. Synaptic activation could trigger subthreshold plateau potentials and low-threshold spikes in some of the second-order vestibular neurons. As a second step, the pharmacology of the synaptic transmission between primary vestibular afferents and second-order neurons was assessed using specific antagonists of the glutamatergic receptors. Both the synaptic field potentials and excitatory postsynaptic potentials elicited in the medial vestibular nucleus by single shock stimulation of the ipsilateral vestibular nerve were largely or, sometimes, totally blocked by 6-cyano-7-nitroquinoxaline-2,3-dione, indicating a dominating role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated glutamatergic transmission. The remaining component of the responses was completely or partially suppressed by DL-2-amino-5-phosphonovaleric acid in 35% of the cases, suggesting a concomitant, moderate involvement of N-methyl-D-asparate receptors. In addition, a synaptic response resistant to both antagonists, but sensitive to a zero Ca2+/high Mg(2+)-containing solution, was often observed. Finally, recordings from abducens and oculomotor complexes confirmed the existence in the guinea-pig of strong bilateral, disynaptic excitatory and inhibitory inputs from vestibular afferents to motoneurons of extraocular muscles, which contribute to generation of the vestibulo-ocular reflex. The functional integrity of vestibular-related pathways in the isolated brain was additionally checked by stimulation of the spinal cord and optic tract. Stimulation of the spinal cord evoked, in addition to antidromic responses in the vestibular nucleus, short-latency synaptic responses in both the vestibular nucleus and abducens motoneurons, suggesting possible recruitment of spinal afferents. Activation of visual pathways at the level of the optic chiasm often induced long latency responses in the various structures under study. These results demonstrate that the in vitro isolated brain can be readily used for detailed, functional studies of the neuronal networks underlying gaze and posture control.  相似文献   

6.
Intracellular recordings were obtained from antidromically identified motoneurons in an embryonic chick spinal cord slice preparation at two developmental stages (embryonic days 12 and 18, E12 and E18) which bracket a critical period in spinal cord growth. The resting membrane potential of chick motoneurons did not change significantly between E12 and E18, but there was a significant decrease in neuronal input resistance. A small inward rectification was present in cells of both ages, although a lower proportion of E12 motoneurons exhibited inward rectification compared to E18 motoneurons. Injection of depolarizing current pulses revealed that most E12 motoneurons exhibited spike adaptation, while the majority of E18 motoneurons showed high frequency tonic firing. Bath application of serotonin (5-HT) and its agonists 5-carboxamido-tryptamine (5-CT, a 5-HT1 agonist) and alpha-methyl 5-HT (a 5-HT2 agonist) produced hyperpolarizing responses accompanied by decreased input resistance in all E12 motoneurons studied. The same three agonists produced depolarizing responses and increased input resistance in all E18 motoneurons studied. The effects of serotonergic agonists on motoneuronal excitability were tested using depolarizing current pulses. In most cases, serotonergic agonists caused a decrease in firing frequency during the hyperpolarizing response in E12 neurons. At E18, bath application of 5-HT, 5-CT or alpha-methyl 5-HT produced an increase in firing frequency in all motoneurons during the depolarizing response. Our results indicate that both 5-HT1 and 5-HT2 receptor subtypes contribute to modulation of chick motoneuron excitability and appear to reverse the polarity of their effects on membrane potential after a critical period in development of the spinal cord.  相似文献   

7.
1. The functional role of the paraventricular nucleus (PVN) has been examined by studying its connections with cardiovascular neurons in the medulla and spinal cord and its influence on activity in several sympathetic nerves. 2. Chemical stimulation of neurons within the PVN can elicit pressor responses and can excite reticulo-spinal vasomotor neurons in the rostral ventrolateral medulla (RVLM). 3. The PVN-RVLM excitation is blocked by kynurenic acid applied iontophoretically in the vicinity of RVLM-spinal neurons, suggesting this is a glutamate-dependent pathway. 4. Electrical stimulation of PVN neurons evoked action potentials in RVLM neurons after 27 ms with a small variability. 5. Anterograde and retrograde labelling of PVN and RVLM neurons revealed PVN terminals closely associated with RVLM-spinal neurons and showed that the PVN is connected to the spinal cord via three pathways. 6. Chemical activation of PVN neurons can produce a pattern of activation of cardiovascular neurons similar to that occurring in defence against plasma volume expansion. 7. It is concluded that the PVN connections with the RVLM and spinal cord are important to a role in defending against life-threatening disturbances.  相似文献   

8.
1. Intracellular recordings were made from slices of guinea pig spinal trigeminal nucleus pars caudalis (SG). 2. Muscarine [0.3-30 microM; half maximally effective concentration (EC50) = 2.9 microM] hyperpolarized 61% of SG neurons. The effect was mimicked by carbachol (0.3-30 microM; EC50 = 3.9 microM) and antagonized by pirenzepine (1 microM). Thirty-four percent of the neurons were depolarized by muscarine and carbachol (1-30 microM: EC50 = 5.7 microM), and the effect was antagonized by pirenzepine (100 nM). 3. In approximately 80% of recordings, muscarine (10-30 microM) evoked repetitive spontaneous inhibitory postsynaptic potentials (IPSPs) that were sensitive to bicuculline (10 microM). 4. Muscarine (1-30 microM; EC50 = 3 microM) decreased the amplitude of the majority of evoked excitatory postsynaptic potentials (EPSPs), and the effect was mimicked by carbachol and antagonized by pirenzepine (100 nM). 5. These results indicate that there are at least three mechanisms by which muscarine inhibits SG neurons: 1) hyperpolarization through activation of non-M1 receptors; 2) activation of gamma-amino-butyric acid-containing interneurons that mediate IPSPs in a subset of neurons; and 3) a decrease in evoked EPSP amplitude. Muscarine can also activate SG neurons via interaction with an M1-type receptor.  相似文献   

9.
Recordings of whole-cell synaptic current responses elicited by electrical stimulation of dorsal roots were made from motoneurons, identified by antidromic invasion, in isolated spinal cord preparations from five- to eight-day-old Wistar rats. Supramaximal electrical stimulation of the dorsal root evoked complex excitatory postsynaptic currents with mean latencies (+/- S.E.M.) of 6.1 +/- 0.26 ms, peak amplitude of -650 +/- 47 pA and duration of 4.30 +/- 0.46 s (n=34). All phases of excitatory postsynaptic currents were potentiated to approximately 20% above control levels in the presence of the metabotropic glutamate receptor antagonists S-2-amino-2-methyl-4-phosphonobutanoate (MAP4; 200 microM; n=15) and 2S, 1'S,2'S-2-methyl-2-(carboxycyclopropyl)glycine (MCCG; 200 microM; n=9). A similar level of potentiation was produced by the GABA(B) receptor antagonist 3-N[1-(S)-(3,4-dichlorophenyl)ethyl]amino-2-(S)-hydroxypropyl-P-benzyl-p hosphinic acid (CGP55845; 200 nM; n=5). MAP4 (200 microM) produced a six-fold rightward shift in the concentration-effect plot for the depressant action of the metabotropic glutamate receptor agonist S-2-amino-4-phosphonobutanoate (L-AP4), whereas CGP55845 produced no significant change in the potency of L-AP4. MAP4 did not antagonize the depressant actions of baclofen (n=8), 1S,3S-1-aminocyclopentane-1,3-dicarboxylate (n=4) or 2-S,1'S,2'S-2-(carboxycyclopropyl)glycine (n=4). The metabotropic glutamate receptor antagonists produced no change in the holding current of any of the neurons, indicating that they had no significant postsynaptic excitatory actions. These results are the first to indicate a possible physiological role for metabotropic glutamate receptors in the spinal cord. Like GABA(B) receptors, they control glutamatergic synaptic transmission in the segmental spinal pathway to motoneurons. This is likely to be a presynaptic control mechanism.  相似文献   

10.
The rabbit nictitating membrane and eyeblink response is widely used in studies of classical conditioning. Eyeblinks involve coordinated activation of the orbicularis oculi motoneurons (OOcVII) and accessory abducens motoneurons (AccVI) which close the external eyelids and nictitating membrane, respectively, and inhibition of levator palpebrae motoneurons (LPIII) whose activity raises the upper eyelid. The identification of blink interneurons that may coordinate these responses is an important step in the analysis of mechanisms supporting eyeblink conditioning as they are likely to receive convergent inputs from circuitry associated with learned as well as unlearned responses. We first investigated the distribution of OOcVII motoneurons in the facial nucleus and LPIII motoneurons in the oculomotor nucleus by retrograde tracing of wheat germ-agglutinated horseradish peroxidase (WGA-HRP) injected into the appropriate muscles. We then used an anterograde tracing method to locate trigeminal and paratrigeminal inputs to OOcVII, to AccVI nucleus, and to LPIII. Injections of WGA-HRP were placed into the principal trigeminal nucleus (Vp) and into all divisions of the spinal trigeminal nucleus. We found an area in Vp and the adjacent rostral parts of pars oralis of the spinal trigeminal nucleus that gave clear projections to OOcVII and AccVI motoneurons and adjacent to LPIII motoneurons in the contralateral oculomotor nucleus. We suggest that neurons in this premotor blink area in rabbits can coordinate learned and reflex blink responses involving the external eyelids and the nictitating membrane. In addition, there are direct projections from the pars interpolaris and pars caudalis of the spinal trigeminal nucleus to the facial nucleus that may mediate short latency responses of the external eyelid orbicularis oculi muscle alone.  相似文献   

11.
Carrageenan was used to study inflammation-induced changes in spinal nociception and its brain stem modulation in the pentobarbitone-anesthetized rat. Carrageenan was administered intraplantarly into one hindpaw 2 h before the start of electrophysiological single unit recordings of wide-dynamic range (WDR) neurons of the spinal dorsal horn. Carrageenan produced a significant leftward shift in the stimulus-response function for mechanical stimuli, whereas that for noxious heat stimuli was short of statistical significance. Conditioning electrical stimulation in the rostroventromedial medulla (RVM) significantly attenuated noxious heat-evoked, but not mechanically evoked, responses to spinal dorsal horn WDR neurons in the control (contralateral) side. However, in the carrageenan-treated side RVM stimulation had no significant effect on mechanically or noxious heat-evoked responses. Following direct spinal administration of neuropeptide FF (NPFF), noxious heat-evoked responses, but not mechanically evoked responses, were attenuated by RVM-stimulation also in the carrageenan-treated side. This selective NPFF-induced enhancement of brain stem-spinal inhibition was not reversed by naloxone. The results indicate that carrageenan-induced inflammation significantly changes the response properties of spinal nociceptive neurons and their brain stem-spinal modulation. During inflammation, NPFF in the spinal cord produces a submodality-selective potentiation of the antinociceptive effect induced by brain stem-spinal pathways, independent of naloxone-sensitive opioid receptors.  相似文献   

12.
Penile erection is due to activation of proerectile neurons located in the sacral parasympathetic nucleus of the L6-S1 spinal cord in the rat. Contraction of the ischiocavernosus and bulbospongiosus striated muscles, controlled by motoneurons located in the ventral horn of the L5-L6 spinal cord, reinforces penile erection. Physiological and pharmacological arguments have been provided for a role of oxytocin and serotonin in the spinal regulation of penile erection. Immunohistochemistry of oxytocinergic and serotonergic fibres was performed at the lumbosacral level of the male rat spinal cord, and combined with retrograde tracing from the pelvic nerve or from the ischiocavernosus and bulbospongiosus muscles using wheat germ agglutinin-horseradish peroxidase. Sacral preganglionic neurons retrogradely labelled from the pelvic nerve formed a homogeneous population, predominant at the L6 level. Motoneurons retrogradely labelled from the ischiocavernosus and bulbospongiosus muscles were observed in the medial part of the dorsolateral and in the dorsomedial nuclei. Fibres immunoreactive for oxytocin were mainly distributed in the superficial layers of the dorsal horn, the dorsal gray commissure and the sacral parasympathetic nucleus. Some of these fibres were apposed to retrogradely-labelled sacral preganglionic neurons and at the ultrastructural level, some synapses were evidenced. Fibres immunoreactive for serotonin were largely and densely distributed in the dorsal horn, the dorsal gray commissure, the sacral parasympathetic nucleus and the ventral horn. Some serotonergic fibres occurred in close apposition with retrogradely-labelled sacral preganglionic neurons and motoneurons, and synapses were demonstrated at the ultrastructural level. This study provides morphological support for a role of oxytocin and serotonin on sacral preganglionic neurons innervating pelvic organs and motoneurons innervating the ischiocavernosus and bulbospongiosus muscles.  相似文献   

13.
1. We examined the effects of 6-wk chronic spinalization at the L1-L2 level on composite monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded in medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), and plantaris (PL) motoneurons. Amplitudes, rise times, and half-widths of composite monosynaptic Ia EPSPs evoked by low-strength electrical stimulation of peripheral nerves were measured in barbiturate-anesthetized cats and compared between unlesioned and chronic spinal preparations. 2. The mean amplitude of homonymous composite Ia EPSPs evoked by 1.2 times threshold (1.2T) stimulation and recorded in all four ankle extensor motoneuron pools increased 26% in chronic spinal animals compared with unlesioned controls. There was also an increased incidence of large-amplitude, short-rise time EPSPs. When the same data were separated according to individual motoneuron species, homonymous EPSP amplitudes in MG motoneurons were found to be unchanged. EPSPs recorded in LG motoneurons and evoked by stimulation of the combined LG and SOL nerve were increased by 46%. Mean EPSP amplitudes recorded in both SOL and PL motoneurons were larger after spinalization but statistical significance was only achieved when values from SOL and PL were combined to produce a larger sample size. 3. In LG motoneurons from chronic spinal animals, all EPSPs evoked by 1.2T stimulation of the LGS nerve were > or = 0.5 mV in amplitude. In unlesioned preparations, one fourth of the LG cells had EPSPs that were < or = 0.2 mV. 4. The mean amplitude of heteronymous EPSPs evoked by 2T stimulation of LGS and MG nerves and recorded in MG and LG motoneurons, respectively, doubled in size after chronic spinalization. Because homonymous EPSP amplitudes were unchanged in MG motoneurons, synaptic mechanisms and not passive membrane properties are likely responsible for increased heteronymous EPSP amplitudes in MG. 5. The mean 10-90% rise time of homonymous composite Ia EPSPs in pooled data from all motoneurons decreased 21% in 6-wk chronic spinal animals. Unlike EPSP amplitude, significant rise time decreases were found in all four motoneuron pools. Compared with the other motoneuron species, the mean homonymous rise time recorded in MG motoneurons was shortest and decreased the least in chronic spinal animals. Rise times of heteronymous Ia EPSPs in MG and LG motoneurons also decreased. The maximum rate of rise of homonymous EPSPs increased in all four motoneuron species. 6. The mean half-widths of Ia composite EPSPs decreased in 6-wk spinalized preparations in all motoneuron species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. This paper describes the use of calcium imaging to monitor patterns of activity in neonatal rat motoneurons retrogradely labeled with the calcium-sensitive dye, calcium green-dextran. 2. Pressure ejection of calcium green-dextran into ventral roots and into the surgically peeled ventrolateral funiculi (VLF) at the lumbar cord labeled spinal motoneurons and interneurons. The back labeled motoneurons often formed two or three discrete clusters of cells. 3. Fluorescent changes (10-20%) could be detected in labeled motoneurons after a single antidromic stimulus of the segmental ventral root. These changes progressively increased in amplitude during stimulus trains (1-5 s) at frequencies from 5 to 50 Hz, presumably reflecting a frequency-dependent increase in free intracellular calcium. 4. Stimulation of the ipsilateral VLF at the caudal lumbar level (L6), elicited frequency-dependent, synaptically induced motoneuronal discharge. Frequency-dependent fluorescent changes could be detected in calcium green-labeled motoneurons during the VLF-induced synaptic activation. 5. The spatial spread of synaptic activity among calcium green-labeled clusters of motoneurons could be resolved after dorsal root stimulation. Low-intensity stimulation of the roots produced fluorescence changes restricted to the lateral clusters of motoneurons. With increasing stimulation intensity the fluorescence change increased in the lateral cells and could spread into the medial motoneuronal group. After a single supramaximal stimulus a similar pattern was observed with activity beginning laterally and spreading medially. 6. Substantial changes in fluorescence of calcium green-labeled motoneurons were also observed during motoneuron bursting induced by bath application of the glycine receptor antagonist strychnine or the potassium channel blocker 4-aminopyridine (4-AP). 7. Our results show that membrane-impermeant fluorescent calcium indicators can be used as a tool to study the activity of specific populations of spinal neurons during execution of motor functions in the developing mammalian spinal cord. They also suggest that lateral clusters of motoneurons in the developing spinal cord of the rat are more recruitable or excitable than more medial clusters. Further understanding of these findings requires identification of these clusters.  相似文献   

15.
1. Eighth nerve evoked responses in central vestibular neurons (n = 146) were studied in the isolated brain stem of frogs. Ninety percent of these neurons responded with a monosynaptic excitatory postsynaptic potential (EPSP) after electrical stimulation of the ipsilateral VIIIth nerve. In 5% of these neurons, the EPSP was truncated by a disynaptic inhibitory postsynaptic potential (IPSP), and in 5% of these neurons a pure disynaptic IPSP was evoked. 2. Disynaptic IPSPs superimposed upon apparently pure EPSPs were revealed by bath application of the glycine receptor antagonist strychnine (0.5-5 microM) or of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline (0.5-2 microM). The evoked EPSP increased in most central vestibular neurons (strychnine: 15 out of 16 neurons; bicuculline 26 out of 29 neurons). At higher stimulus intensities, the evoked spike discharge increased from 2 to 3 spikes before up to 8-10 spikes per electrical pulse during the application of blocking agents. The unmasked disynaptic inhibitory component increased with stimulus intensity to a different extent in different neurons. 3. Lesion studies demonstrated that these inhibitory components were generated ipsilaterally with respect to the recording side. The disynaptic strychnine-sensitive inhibition was mediated by neurons located either in the ventral vestibular nuclear complex (VNC) or in the adjacent reticular formation. The spatial distribution of the disynaptic inhibition was investigated by simultaneous recordings of VIIIth nerve-evoked field potentials at different rostrocaudal locations of the VNC. A significant strychnine-sensitive component was detected in the middle and caudal parts but not in the rostral part of the VNC. A bicuculline-sensitive component was detected in the rostral and in the caudal parts but not in the middle part of the VNC. In view of a similar rostrocaudal distribution of glycineor GABA-immunoreactive neurons in the VNC of frogs, our results suggest that part of the disynaptic inhibition is mediated by local interneurons with a spatially restricted projection area. 4. The monosynaptic EPSP of second-order vestibular neurons was mediated in part by N-methyl-D-aspartate (NMDA) and in part by non-NMDA receptors. The relative contribution of the NMDA receptor-mediated component of the EPSP decreased with stronger stimuli. This negative correlation could have resulted from a preferential activation of NMDA receptors via thick vestibular nerve afferent fibers. Alternatively, the activation of NMDA receptors became disfacilitated at higher stimulus intensities due to the recruitment of disynaptic inhibitory inputs. Comparison of data obtained in the presence and in the absence of these glycine and GABAA receptor blockers indicates a preferential activation of NMDA receptors via larger-diameter vestibular nerve afferent fibers. 5. The kinetics of NMDA receptors (delay, rise time) activated by afferent nerve inputs were relatively fast. These fast kinetics were independent of superimposed IPSPs. The association of these receptors with large-diameter vestibular nerve afferent fibers suggests that fast NMDA receptor kinetics might be matched to the more phasic response dynamics of the large diameter vestibular afferent neurons to natural head accelerations.  相似文献   

16.
We studied whether a chronic neuropathy induced by unilateral spinal nerve ligation changes the response characteristics of spinal dorsal horn wide-dynamic range (WDR) neurons or their periaqueductal gray (PAG)-induced descending modulation. Experiments were performed in rats with behaviorally demonstrated allodynia induced by spinal nerve ligation and in a group of nonneuropathic control rats. The stimulus-response functions of WDR neurons for mechanical and thermal stimuli and the modulation of their peripherally evoked responses by electrical stimulation of the PAG were determined under pentobarbital anesthesia. The results showed that neuropathy caused a significant leftward shift in stimulus-response functions for mechanical stimuli. In contrast, stimulus-response functions for noxious heat stimuli in the neuropathic limb were, if anything, shifted rightward, although this shift was short of statistical significance. In neuropathic rats, PAG stimulation produced a significantly stronger attenuation of spinal neuronal responses induced by noxious heat in the unoperated than in the operated side. At the intensity that produced attenuation of noxious heat stimuli, PAG stimulation did not produce any significant change in spinal neuronal responses evoked by mechanical stimuli either from the operated or the nonoperated hindlimb of the neuropathic rats. Spontaneous activity of WDR neurons was higher in the operated side of neuropathic rats than in control rats. Afterdischarges evoked by peripheral stimuli were observed in 1/16 of the WDR neurons ipsilateral to spinal nerve ligation and not at all in other experimental groups. The WDR neurons studied were not activated by innocuous or noxious cold stimuli. The results indicate that spinal nerve ligation induces increased spontaneous activity and enhanced responses to mechanical stimuli in the spinal dorsal horn WDR neurons, whereas noxious heat-evoked responses are not significantly changed or if anything, attenuated. Moreover, the inhibition of noxious heat stimuli by PAG stimulation is attenuated in the neuropathic side. It is proposed that the observed changes in the response characteristics of the spinal dorsal horn WDR neurons and in their descending modulation may contribute to the neuropathic symptoms in these animals.  相似文献   

17.
The naturally occurring tachykinins, substance P, neurokinin A and neurokinin B, induce the formation of inositol phosphates or cAMP in a variety of tissues but their effects on neurons have not been resolved. We used primary cultures of neonatal rat spinal cord to determine whether neurokinin receptors mediate changes in these second messengers in spinal neurons. We found that substance P, neurokinin A and neurokinin B induced the formation of inositol phosphates in a concentration-dependent manner with similar potencies (EC50S: 3.6, 5.7 and 21.3 nM, respectively), but at concentrations tested (0.1-1.0 microM) these peptides had no effect on cAMP levels. All three tachykinins induced the formation of inositol phosphates predominately by activation of neurokinin1 receptors. CP-96,345 and WIN 51,708, neurokinin1 receptor antagonists, attenuated the response to substance P, neurokinin A and neurokinin B. GR 103,537, a neurokinin2 receptor antagonist, had no effect on the responses induced by any of the tachykinins. Furthermore, the selective neurokinin1 receptor agonist, GR-73632, induced the formation of inositol phosphates in a concentration-dependent manner, whereas the selective neurokinin2 receptor agonist, GR-64349, generated inositol phosphates only at the highest concentration tested (10 microM). Senktide, a neurokinin3 receptor agonist, did not induce the formation of inositol phosphates at any of the concentrations tested (0.01-10 microM). Inositol phosphate formation appeared to be due to a direct effect of the tachykinins on neuronal neurokinin1 receptors. These results suggest that biological responses in spinal neurons following activation of neurokinin1 receptors are mediated mainly by the hydrolysis of phosphoinositol 4,5-bisphosphate to form inositol 1,4,5-trisphosphate and diacylglycerol. It remains to be determined which of these second messengers mediates the increased neuronal excitability and depolarization that occurs in response to substance P.  相似文献   

18.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

19.
In astrocytes, raising intracellular Ca2+ concentration is a principal mechanism for transducing extracellular signals following activation of cell-surface receptors. Receptors that may be activated by purine nucleotides, P2 receptors, are known to be expressed by astrocytes from dorsal spinal cord; these astrocytes express two distinct subtypes of P2 receptor, P2Y and P2U. A main goal of the present study was to determine the intracellular signalling pathways mediating the Ca2+ responses produced by stimulating these receptors. Experiments were done using cultured astrocytes from rat dorsal spinal cord. Ca2+ responses were evoked by 2-methylthio-ATP or UTP, nucleotides previously shown to selectively activate P2Y and P2U receptors, respectively, in these cells. P2Y- and P2U-evoked Ca2+ responses were found not to depend upon extracellular Ca2+ and were blocked by thapsigargin, a Ca2+-ATPase inhibitor known to deplete inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Intracellular application of the inositol 1,4,5-triphosphate-sensitive receptor antagonist, heparin, or of the G-protein inhibitor guanosine 5'-O-(2-thiodiphosphate), blocked the P2Y- and P2U-evoked Ca2+ responses. Moreover, the responses were prevented by the phospholipase C inhibitor, U-73122, but were unaffected by the inactive analogue, U-73343. These results indicate that P2Y and P2U receptors on dorsal spinal astrocytes are linked via G-protein coupling to release of intracellular Ca2+ via the phospholipase C/inositol 1,4,5-triphosphate pathway. When we assessed the releasable pools of intracellular Ca2+, by repeated agonist applications in zero extracellular Ca2+, we found that the pool accessed by activating P2U receptors was only a subpool of that accessed by activating P2Y receptors. This implies that there are separable inositol 1,4,5-triphosphate-releasable pools of Ca2+ in dorsal spinal astrocytes and that these may be differentially released by activating distinct metabotropic P2 receptors. This differential release of Ca2+ may be important for physiological as well as pathophysiological events occurring within the spinal cord.  相似文献   

20.
Previous studies have shown that corticosteroids affect the changes in membrane potential evoked in CA1 hippocampal neurons by serotonin and the metabolically stable cholinergic analogue carbachol: Low corticosteroid levels induced by steroid administration to adrenalectomized rats or obtained in adrenally intact rats were associated with small transmitter responses. High corticosteroid levels induced by exogenous corticosteroid application or by an acute stress in adrenally intact rats generally evoked large transmitter responses. In the present study we investigated the consequences of this steroid modulation for the main stream of synaptic information in the CA1 hippocampal region, which is carried by amino acids. To this purpose the effect of serotonin and carbachol administration on both extracellularly and intracellularly recorded synaptic responses to Schaffer collateral stimulation were investigated. The data show that the effect of in vivo activation of corticosteroid receptors on the serotonin-induced hyperpolarization of the membrane responses is clearly reflected in the inhibitory effect of serotonin on synaptic responsiveness in the CA1 area. Low circulating levels of corticosterone or selective mineralocorticoid receptor activation reduced the serotonin mediated inhibition of synaptically evoked responses, whereas high corticosterone levels were associated with strong serotonin mediated suppression of synaptic responses. This steroid modulation seems to be specifically aimed at serotonin neurotransmission, as the cholinergic effects on excitatory synaptic transmission were not affected by the hormone treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号