首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evasion from first- and second-order streams in a watershed may be a significant factor in the atmospheric recycling of volatile pollutants such as mercury; however, methods developed for the determination of Hg evasion rates from larger water bodies are not expected to provide satisfactory results in highly turbulent and morphologically complex first- and second-order streams. A new method for determining the Hg evasion rates from these streams, involving laboratory gas-indexing experiments and field tracer tests, was developed in this study to estimate the evasion rate of Hg from Gossan Creek, a first-order stream in the Upsalquitch River watershed in northern New Brunswick, Canada. Gossan Creek receives Hg-contaminated groundwater discharge from a gold mine tailings pile. Laboratory gas-indexing experiments provided the ratio of gas-exchange coefficients for zero-valent Hg to propane (tracer gas) of 0.81+/-0.16, suggesting that the evasion mechanism in highly turbulent systems can be described by the surface renewal model with an additional component of enhanced gas evasion probably related to the formation of bubbles. Deliberate field tracer tests with propane and chloride tracers were found to be a reliable and practical method for the determination of gas-exchange coefficients for small streams. Estimation of Hg evasion from the first 1 km of Gossan Creek indicates that about 6.4 kg of Hg per year is entering the atmosphere, which is a significant fraction of the regional sources of Hg to the atmosphere.  相似文献   

2.
The impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in the development of numerous advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Although these technologies can effectively remove mercury from a flue stack they share, along with many other technologies, the common shortcoming of intermedia pollution transfer i.e. the traffic of mercury from the air phase to the solid phase and the subsequent generation of residue for landfill. This work addresses the need for an integrated system of mercury removal and recovery from flue stack gases and from the environment. The research explored the capture of elemental mercury from the gas phase at ambient temperature on an electrically conductive porous sorbent. The mercury loaded sorbent was regenerated at the anode in an electrochemical cell and the oxidized mercury recovered at the cathode as solid elemental mercury. Activated carbon cloth was selected as the most suitable sorbent as it had the highest mercury adsorption capacity of the sorbents tested and was electrically conductive. Direct and indirect electro-oxidation were shown to remove 95% and 100%, respectively, of the elemental mercury from the carbon cloth. After regeneration the carbon cloth was reused without any loss in mercury adsorption capacity. More than 99% of the mercury stripped from the cloth during regeneration was recovered at the cathode.  相似文献   

3.
Passive in situ remediation technologies, for example, permeable reactive barriers, PRBs, are an attractive and less expensive alternative compared to conventional pump and treat systems for groundwater remediation. Field column experiments were conducted to evaluate the removal of dissolved mercury from groundwater using zerovalent iron as the reactive media. Two column tests were conducted over a 6-week period, which simulated 2 and 10 years of groundwater flow through a potential full-scale treatment system. The influent groundwater pH was 7.8-9.5. The groundwater was reduced with an Eh, corrected to the standard hydrogen electrode, ranging from 0 to 120 mV over the trial period. Prior to treatment the total mercury concentration of the groundwater was approximately 40 microg L(-1). Effluent from the 10-year simulation contained approximately 0.5 microg/L of mercury during the first 3 weeks and increased to as much as 4 microg L(-1) by the end of the testing period. Effluent from the 2-year simulation was generally < 0.1 microg L(-1). Profile sampling of the 2-year simulation suggests that most of the mercury removal occurred in the initial 50% of the 20 cm column. Mineralogical studies, conducted using SEM/EDS and X-ray absorption spectroscopy (XAS), confirm the accumulation of mercury onto a zerovalent iron surface in this 20-cm zone. These analyses indicate that mercury accumulated as a mercury sulfide with a stoichiometery similar to those of cinnabar and metacinnabar (HgS).  相似文献   

4.
To understand the contribution of submarine groundwater discharge (SGD) to the coastal mass budgets of Hg and monomethylmercury (MMHg), preliminary mass balance estimates were made for Hwasun and Bangdu Bays on Jeju Island, known to have large SGD due to the high permeability of the volcanic rocks. The mass balance results indicate that SGD is a main source of Hg in Hwasun Bay (23 ± 14 × 10(-2) mol yr(-1), 34%) and Bangdu Bay (23 ± 20 × 10(-2) mol yr(-1), 67%), although the contribution from atmospheric deposition was considerable (25% for Hwasun and 23% for Bangdu). MMHg was also discharged primarily from submarine groundwater at Hwasun (0.30 ± 0.17 × 10(-2) mol yr(-1), 55%) and Bangdu (0.65 ± 0.49 × 10(-2) mol yr(-1), 64%), which was higher than atmospheric deposition (6% for Hwasun and 2% for Bangdu) and sediment diffusion flux (5% for Hwasun and 3% for Bangdu). The overall mass balance results suggest that, although there are large spatial variations in SGD rates throughout the region, the coastal mass budgets of Hg and MMHg need to include SGD as well as atmospheric deposition and sediment diffusion as primary sources of Hg and MMHg.  相似文献   

5.
The efficacy of copper shavings (Cu(0)) for the removal of Hg2+ from aqueous solution by amalgamation is demonstrated. Two kinds of copper shavings were investigated: (a) chemically processed shavings (Fluka) and (b) recycled shavings from scrap metal. Batch sorption experiments yielded very high retardation coefficients of 28 850-82 830 for the concentration range studied (1-10 000 microg/L Hg2+ dissolved in distilled water or in a 0.01 M CaCl2 matrix solution). Sorption data were well-described bythe Freundlich isotherm equation. Kinetic batch sorption experiments showed that 96-98% of Hg2+ was removed within 2 h. Column experiments were performed with a mercury solution containing 1000 microg/L Hg in a 0.01 M CaCl2 matrix with a flow rate of 0.5 m/d. No mercury breakthrough (c/c(0) = 0.5) could be detected after more than 2300 percolated pore volumes, and the high retardation coefficients determined in the batch studies could be confirmed. Copper was released from the shavings due to the amalgamation process and to copper corrosion by oxygen, resulting in concentrations of mobilized copper of 0.2-0.6 mg/L. Due to their high efficiency in removing Hg2+ from aqueous solution, the use of copper shavings for the removal of mercury from contaminated water is suggested, employing a sequential system of mercury amalgamation followed by the removal of mobilized copper by an ion exchanger such as zeolites. Possible applications could be in environmental technologies such as wastewater treatment or permeable reactive barriers for in situ groundwater remediation.  相似文献   

6.
7.
In situ mesocosm experiments were performed to examine dissolved gaseous mercury (DGM), mercury volatilization, and sediment interactions in a frozen freshwater fluvial lake (Lake St. Louis, Beauharnois, QC). Two large in situ mesocosm cylinders, one open-bottomed and one close-bottomed (no sediment diffusion), were used to isolate the water column and minimize advection. Mercury volatilization over the closed-bottom mesocosm did not display a diurnal pattern and was low (mean = -0.02 ng m(-2) h(-1), SD = 0.28, n=71). Mercury volatilization over the open-bottom mesocosm was also low (mean = 0.24 ng m(-2) h(-1), SD = 0.08, n=96) however a diurnal pattern was observed. Low and constant concentrations of DGM were observed in surface water in both the open-bottomed and close-bottomed mesocosms (combined mean = 27.6 pg L(-1), SD = 7.2, n=26). Mercury volatilization was significantly correlated with solar radiation in both the close-bottomed (Pearson correlation = 0.33, significance = 0.005) and open-bottomed (Pearson correlation = 0.52, significance = 0.001) mesocosms. However, DGM and mercury volatilization were not significantly correlated (at the 95% level) in either of the mesocosms (significance = 0.09 in the closed mesocosm and significance = 0.9 in the open mesocosm). DGM concentrations decreased with depth (from 62 to 30 pg L(-1)) in the close-bottomed mesocosm but increased with depth (from 30 to 70 pg L(-1)) in the open-bottomed mesocosm suggesting a sediment source. DGM concentrations were found to be high in samples of ice melt (mean 73.6 pg L(-1), SD = 18.9, n=6) and snowmelt (mean 368.2 pg L(-1), SD = 115.8, n=4). These results suggest that sediment diffusion of mercury and melting snow and ice are important to DGM dynamics in frozen Lake St. Louis. These processes may also explain the lack of significant correlations observed in the DGM and mercury volatilization data.  相似文献   

8.
Evaluation of mercury toxicity as a predictor of mercury bioavailability   总被引:4,自引:0,他引:4  
Many studies on bioavailability of toxic metals have made the assumption that observation of toxicity is evidence thatthe metal was taken into the cells (i.e., was "bioavailable"). A second assumption is that results at the high concentrations necessary for toxic effect are applicable to the lower concentrations more commonly found in the environment. These assumptions were specifically tested for mercury (Hg(II)) toxicity (at concentrations of 0.25-50 nM Hg) and uptake (at lower concentrations of 0.005-0.015 nM Hg) in the aquatic bacterium, V. anguillarum. Toxicity was measured as reduction in levels of constitutively expressed bioluminescence in V. anguillarum pRB27. Hg(II) uptake was measured using the Hg(II)-inducible mer-lux operon in V. anguillarum pRB28. In experiments where the predominant Hg species was changed from HgCl2 to Hg(OH)2 or Hg(NH3)2(2+), toxicity results accurately predicted that there would be no effect of the dominant species on Hg(II) uptake at lower HgT concentrations. However, toxicity tests with these same ligands failed to predict that there would be an effect on Hg(II) uptake when conditions were changed from aerobic to anaerobic. Toxicity tests also failed to predict the effect of 5 mM histidine additions on Hg(II) uptake, as histidine addition protected cells completely from Hg toxicity under both aerobic and anaerobic conditions, at concentrations up to 50 nM Hg, but did not prevent Hg(II) uptake. Uptake occurred at low HgT concentrations (0.01 nM) at the same rate when histidine was added under aerobic conditions and was substantially increased under anaerobic conditions. Thus, toxicity assays for Hg under a variety of conditions were not always a reliable predictor of the effects of those conditions on Hg(II) uptake into the cell.  相似文献   

9.
The importance of dew in the mercury cycle was investigated during three sampling periods in the Great Lakes region and one in the Florida Everglades. Mercury concentrations ranged from 1.0 to 22.6 ng/L in dew. Deposition per dew event was, on average, lowest at a remote site on Lake Superior (0.31 ng/m2) and highest in the Florida Everglades (1.4 ng/m2). The estimated mercury deposition to the canopy associated with dew approximately equaled that of precipitation during the wintertime Everglades study. Relative to other trace elements (Mg, Ti, V, Mn, Ni, Cu, As, Sr, Cd, Sb, La, Ce, Pb), mercury was found to be more enriched in rain than dew, suggesting the importance of gas scavenging for precipitation. The fraction of mercury in dew from particulate deposition was estimated to average 40%, with the remaining contribution from reactive gaseous Hg (RGM). RGM, for which little reliable data exists, was measured in the Everglades and was significantly reduced at the start of a dew event, indicating pronounced removal of this soluble mercury species to wetted surfaces. The first estimates of RGM deposition velocities based on mercury flux measurements are reported here and range up to 1.6 cm/s.  相似文献   

10.
At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). In some contaminated locations, (53)Cr/(52)Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but in some locations has elevated (53)Cr/(52)Cr. Some contaminated wells have (53)Cr/(52)Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of (53)Cr/(52)Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.  相似文献   

11.
Coal combustion accounts for approximately two-thirds of global anthropogenic mercury (Hg) emissions. Enhanced deposition of Hg can occur close to coal-fired utility boilers (CFUBs), but it is difficult to link specific point sources with local deposition. Measurement of Hg stable isotope ratios in precipitation holds promise as a tool to assist in the identification of local Hg deposition related to anthropogenic emissions. We collected daily event precipitation samples in close proximity to a large CFUB in Crystal River, Florida. Precipitation samples collected in Crystal River were isotopically distinct and displayed large negative δ(202)Hg values (mean = -2.56‰, 1 SD = 1.10‰, n = 28). In contrast, precipitation samples collected at other sites in FL that were not greatly impacted by local coal combustion were characterized by δ(202)Hg values close to 0‰ (mean = 0.07‰, 1 SD = 0.17‰, n = 13). These results indicate that, depending on factors such as powdered coal isotopic composition and efficiency of Hg removal from flue gas, Hg deposited near CFUBs can be isotopically distinct. As this tool is further refined through future studies, Hg stable isotopes may eventually be used to quantify local deposition of Hg emitted by large CFUBs.  相似文献   

12.
13.
14.
15.
Fifty-two samples of broiled eels and broiled eel liver were analyzed for total mercury (total Hg) and methyl mercury. The mean concentrations of total Hg in broiled eels and broiled eel liver were 0.21 ppm and 0.10 ppm, respectively. Meanwhile, the mean concentrations of methyl mercury in broiled eels and broiled eel liver were 0.085 ppm and 0.039 ppm, respectively. The rate of methyl mercury to total Hg mainly ranged from 60 to 80% in broiled eels and from 35 to 65% in broiled eel liver. The total Hg concentrations of 2 samples of broiled eels and one sample of broiled eel liver exceeded the provisional regulation limit (0.4 ppm) of total Hg in fish in Japan. In these samples, the rates of methyl mercury to total Hg were lower than 20%. The muscles and the skin of broiled eels were measured separately. The ratios of skin to muscle concentration of total Hg and methyl mercury were mainly in the range from 1/10 to 1/4. The mean intakes of total Hg from broiled eels and broiled eel liver per individual were 24.6 microg and 3.1 microg, respectively. The mean intakes of methyl mercury from broiled eels and broiled eel liver per individual were 10.4 microg and 1.2 microg, respectively.  相似文献   

16.
亚琛工业大学纺织技术研究所(ITA)研发了能够模拟纤维运动学的数字模型,如预测纤维的运动轨迹及变形。通过计算流体动力学(CFD)技术可以分析不同加工过程中纤维的运动。  相似文献   

17.
18.
Sulfide species as a sink for mercury in lake sediments   总被引:2,自引:0,他引:2  
The interaction between two contrasting examples of lake sediments and small concentrations of mercury added to the sediments in solution has been studied using X-ray absorption spectroscopy. Whereas one lake (Esthwaite Water) is biologically productive, with a seasonal cycle of phytoplankton activity, including stratification and Fe(III) reduction, and a mineralogy involving quartz, muscovite, and clinochlore, the other (Botany Pond) remains oxic throughout the year. In the latter case, the sediment is predominantly quartz and calcite. Chemical analyses of these two lake sediments reflectthe differences in mineralogy and showthat both contain significant organic carbon (approximately 10-12 wt %) and smaller amounts of S (approximately 0.2-1.7 wt %) and Cl (approximately 0.4-1.1 wt %). Despite the substantial amounts of organic matter in both sediments, the spectroscopic data show that the mercury occurs as a sulfide phase with a local structural environment akin to that in cinnabar. Parallel spectroscopic studies conducted on Hg either coprecipitated or sorbed onto FeS (mackinawite), and on oxidized mackinawite, provide supporting information; the possibility of Hg forming a chloride was eliminated by careful mapping of the relevant elements by an electron microprobe. It appears, therefore, that the high affinity of Hg for S predominates even in substantially oxic environments.  相似文献   

19.
The biogeochemical processes controlling the speciation and transport of manganese in a Colorado mountain stream were studied using a conservative tracer approach combined with laboratory experiments. The study stream, Lake Fork Creek, receives manganese-rich inflows from a wetland contaminated by acid mine drainage. A conservative tracer experiment was conducted on a 1300-m reach of the stream. Results indicate that manganese was progressively removed from the stream, resulting in a loss of 64 +/- 17 micromol day(-1) m(-1). Laboratory experiments using streamwater, mine effluent, and rocks from the stream showed the importance of surface-catalyzed oxidation and photoreduction on the speciation of manganese. The field and modeling results indicate that light generally promotes oxidation and removal of manganese from the stream, presumably through a photosynthetically enhanced oxidation process. Differences in Mn speciation within the stream suggest that reductive processes affect Mn speciation within the water column. These results identify the rapid oxidation and precipitation of MnOx as a dominant process within this freshwater stream.  相似文献   

20.
The feasibility of phytoremediation to both remediate and hydraulically contain a methyl tert-butyl ether (MTBE)-contaminated groundwater plume was investigated in a three-phase study that included the following elements: (i) a laboratory bioreactor study that examined the fate and transport of 14C-radiolabeled MTBE in hybrid poplar trees, (ii) a novel approach for a mathematical modeling study that investigated the influence of deep-rooted trees on unsaturated and saturated groundwater flow, and (iii) a field study at a Houston site with MTBE-contaminated groundwater where hybrid poplar trees were planted. In the laboratory study, the predominant fate pathway was uptake and evapotranspiration of [14C]-MTBE from leaves and stems of poplar cuttings rooted in hydroponic solution. The modeling study demonstrates that phytohydraulic containment of MTBE in groundwater by deep-rooted trees can be achieved. The field study demonstrated significant groundwater uptake of groundwater by deep-rooted trees via direct measurement in the first three seasons. The use of vegetation may provide a cost-effective in-situ alternative for containment and remediation of MTBE-contaminated groundwater plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号