首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ion exchange resins (IERs) as carriers, a dual-drug sustained release suspension containing codeine, and chlorpheniramine had been prepared to elevate drug safety, effectiveness and conformance. The codeine resinate and chlorpheniramine resinate beads were prepared by a batch process and then impregnated with Polyethylene glycol 4000 (PEG 4000), respectively. The PEG impregnated drug resinate beads were coated with ethylcellulose as the coating polymer and di-n-butyl-phthalate as plasticizer in ethanol and methylene chloride mixture by the Wurster process. The coated PEG impregnated drug resinate beads were dispersed in an aqueous suspending vehicle containing 0.5% w/w xanthan gum and 0.5% w/w of hydroxypropylmethylcellulose of nominal viscosity of 4000 cps, obtaining codeine resinate and chlorpheniramine resinate sustained-release suspension (CCSS).

Codeine phosphate and chlorpheniramine maleate were respectively loaded onto AMBERLITE® IRP 69, and PEG 4000 was used to impregnate drug resinate beads to maintain their geometry. Ethylcellulose with di-n-butyl-phthalate in ethanol and methylene chloride mixture for the coating of drug resinate beads was performed in Glatt fluidized bed coater, where the coating solution flow rate was 8-12 g/min, the inlet air temperature was 50-60°C, the outlet air temperature was 32-38°C, the atomizing air pressure was 2.0 bar and the fluidized air pressure was adjusted as required. Few significant agglomeratation of circulating drug resinate beads was observed during the operation. The film weight gained 20% w/w and 15% w/w were suitable for the PEG impregnated codeine resinate and chlorpheniramine resinate beads, respectively. Residual solvent content increased with coating level, but inprocess drying could reduce residual solvent content.

In the present study, the rates of drug release from both drug resinate beads were measured in 0.05M and 0.5M KCl solutions. The increased ionic strength generally accelerated the release rate of both drugs. But the release of codeine from its resinate beads was much more rapid than chloropheneramine released from its resinate beads in the same ionic strength release medium. The drug release specification of the CCSS, where release mediums were 0.05M KCl solution for codeine and 0.5M KCl solution for chlorpheniramine, was established to be in conformance with in vivo performance.

Relative bioavailability and pharmacokinetics evaluation of the CCSS, using commercial immediate-release tablets as the reference preparation, were performed following a randomized two-way crossover design in beagle dogs. The drug concentrations in plasma were measured by a validated LC-MS/MS method to determine the pharmacokinetic parameters of CCSS. This LC-MS/MS method demonstrated high accuracy and precision for bioanalysis, and was proved quick and reliable for the pharmacokinetic studies. The results showed that the CCSS had the longer value of Tmax and the lower value of Cmax, which meant an obviously sustained release effect, and its relative bioavailability of codeine and chlorpheniramine were (103.6 ± 14.6)% and (98.1 ± 10.3)%, respectively, compared with the reference preparation. These findings indicated that a novel liquid sustained release suspension made by using IERs as carriers and subsequent fluidized bed coating might provide a constant plasma level of the active pharmaceutical ingredient being highly beneficial for various therapeutic reasons.  相似文献   

2.
The effect of heat on the characteristics of chitosan film coated on theophylline tablets was studied. Chitosan of high viscosity grade with molecular weight in the range of 800,000-1,000,000, 80-85% degree of deacetylation was used as a film former by dissolving in 1% v/v acetic acid solution. The coated tablets had been cured at 40, 60, and 100°C for 6, 12, and 24 hr. The morphology of the film at the edge and surface of coated tablets was investigated using scanning electron microscopy. Film cracking was increased and clearly observed in the coated tablets cured at 100°C for 24 hr. As a result, more water could be absorbed into the tablets, followed by faster disintegration and faster drug release. The evidence of partial conversion of chitosonium acetate to chitin in the 13C nuclear magnetic resonance (NMR) spectra of chitosan films cured at 40, 60, and 100°C was observed, but it had no effect on drug release behavior. Theophylline tablets coated with chitosan films gave sustained release behavior in various media, i.e., distilled water, 0.1 N hydrochloric acid, pH 4.5 acetate buffer, and pH 6.8 phosphate buffer. In addition, the film coating temperature at 55-60°C and curing process at 40 and 60°C had no effect on the drug release from theophylline tablets coated with chitosan polymer. Finally, it might be concluded that both the physical and chemical properties of chitosan films were affected by heat.  相似文献   

3.
Development of matrix-based theophylline sustained-release microtablets   总被引:1,自引:0,他引:1  
Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50°C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37°C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50°C for 2 months showed no significant influence on the theophylline release.  相似文献   

4.
The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30-40% drug release during the initial 4-5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18-24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

5.
Sustained-release tablets of propranolol HCl were prepared by direct compression using chitosan and xanthan gum as matrix materials. The effective prolongation of drug release in acidic environment was achieved for matrix containing chitosan together with xanthan gum which prolonged the drug release more extensive than that containing single polymer. Increasing lactose into matrix could adjust the drug release characteristic by enhancing the drug released. Component containing chitosan and xanthan gum at ratio 1:1 and lactose 75% w/w was selected for preparing the layered matrix by tabletting. Increasing the amount of matrix in barrier or in middle layer resulted in prolongation of drug release. From the investigation of drug release from one planar surface, the lag time for drug release through barrier layer was apparently longer as the amount of barrier was enhanced. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi's and zero order) was performed to study the drug release mechanism. Layering with polymeric matrix could prolong the drug release and could shift the release pattern approach to zero order. The drug release from chitosan-xanthan gum three-layer tablet was pH dependent due to the difference in charge density in different environmental pH. FT-IR and DSC studies exhibited the charge interaction between of NH3+ of chitosan molecule and COO- of acetate or pyruvate groups of xanthan gum molecule. The SEM images revealed the formation of the loose membranous but porous film that was due to the gel layer formed by the polymer relaxation upon absorption of dissolution medium. The decreased rate of polymer dissolution resulting from the decreased rate of solvent penetration was accompanied by a decrease in drug diffusion due to ionic interaction between chitosan and xanthan gum. This was suggested that the utilization of chitosan and xanthan gum could give rise to layered matrix tablet exhibiting sustained drug release.  相似文献   

6.
ABSTRACT

The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30–40% drug release during the initial 4–5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18–24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

7.
ABSTRACT

Sustained-release tablets of propranolol HCl were prepared by direct compression using chitosan and xanthan gum as matrix materials. The effective prolongation of drug release in acidic environment was achieved for matrix containing chitosan together with xanthan gum which prolonged the drug release more extensive than that containing single polymer. Increasing lactose into matrix could adjust the drug release characteristic by enhancing the drug released. Component containing chitosan and xanthan gum at ratio 1:1 and lactose 75% w/w was selected for preparing the layered matrix by tabletting. Increasing the amount of matrix in barrier or in middle layer resulted in prolongation of drug release. From the investigation of drug release from one planar surface, the lag time for drug release through barrier layer was apparently longer as the amount of barrier was enhanced. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi's and zero order) was performed to study the drug release mechanism. Layering with polymeric matrix could prolong the drug release and could shift the release pattern approach to zero order. The drug release from chitosan-xanthan gum three-layer tablet was pH dependent due to the difference in charge density in different environmental pH. FT-IR and DSC studies exhibited the charge interaction between of NH3+ of chitosan molecule and COO? of acetate or pyruvate groups of xanthan gum molecule. The SEM images revealed the formation of the loose membranous but porous film that was due to the gel layer formed by the polymer relaxation upon absorption of dissolution medium. The decreased rate of polymer dissolution resulting from the decreased rate of solvent penetration was accompanied by a decrease in drug diffusion due to ionic interaction between chitosan and xanthan gum. This was suggested that the utilization of chitosan and xanthan gum could give rise to layered matrix tablet exhibiting sustained drug release.  相似文献   

8.
The objective of this study is to gain a mechanistic understanding of drug release kinetics from directly compressed tablets containing Carbopol 934P and 974P resins. Carbopol resins belong to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether. They are currently being used as polymeric matrices for controlling drug release in pharmaceutical tablets. This investigation focuses on the influence of the type of drug and the pH of the dissolution media, along with other factors on the drug release kinetics from carbomer matrices. Directly compressed tablets were prepared using a Stokes single station laboratory press and blends of polymers and lactose with drugs like theophylline, norephedrine HCI, and chlorpheniramine maleate. In vitro. drug release studies from the tablets were performed according to USP method II. Drug release rates were obtained by plotting the fraction released versus time and data fitted to the equation:  相似文献   

9.
Studies on Drug Release Kinetics from Carbomer Matrices   总被引:4,自引:0,他引:4  
The objective of this study is to gain a mechanistic understanding of drug release kinetics from directly compressed tablets containing Carbopol 934P and 974P resins. Carbopol resins belong to a family of carbomers which are synthetic, high molecular weight, non-linear polymers of acrylic acid, crosslinked with polyalkenyl polyether. They are currently being used as polymeric matrices for controlling drug release in pharmaceutical tablets. This investigation focuses on the influence of the type of drug and the pH of the dissolution media, along with other factors on the drug release kinetics from carbomer matrices. Directly compressed tablets were prepared using a Stokes single station laboratory press and blends of polymers and lactose with drugs like theophylline, norephedrine HCI, and chlorpheniramine maleate. In vitro. drug release studies from the tablets were performed according to USP method II. Drug release rates were obtained by plotting the fraction released versus time and data fitted to the equation:  相似文献   

10.
An aqueous based polymeric coating system, polydimethyl-siloxane elastomer latex, was employed to coat acetaminophen tablets. Drug release characteristics due to this polymer coating were monitored by in-vitro dissolution tests. It was found that heat treatment of the coating and the desiccation pretreatment significantly changed the drug release profiles compared to untreated, coated tablets. The slowest drug release rate was obtained by desiccating the coated tablets for 24 hours or more followed by heat treatment at 40°C for at least 4.5 hours. Rupturing of the coating layer during dissolution testing was observed only if the curing process was not utilized. As expected, drug released at a given time was inversely proportional to the coating thickness.  相似文献   

11.
Some naturally occurring biocompatible materials were evaluated as mucoadhesive controlled release excipients for buccal drug delivery. A range of tablets were prepared containing 0-50% w/w xanthan gum, karaya gum, guar gum, and glycol chitosan and were tested for swelling, drug release, and mucoadhesion. Guar gum was a poor mucoadhesive and lacked sufficient physical integrity for buccal delivery. Karaya gum demonstrated superior adhesion to guar gum and was able to provide zero-order drug release, but concentrations greater than 50% w/w may be required to provide suitable sustained release. Xanthan gum showed strong adhesion to the mucosal membrane and the 50% w/w formulation produced zero-order drug release over 4 hours, about the normal time interval between daily meals. Glycol chitosan produced the strongest adhesion, but concentrations greater than 50% w/w are required to produce a nonerodible matrix that can control drug release for over 4 hours. Swelling properties of the tablets were found to be a valuable indicator of the ability of the material to produce sustained release. Swelling studies also gave an indication of the adhesion values of the gum material where adhesion was solely dependent upon penetration of the polymer chains into the mucus layer.  相似文献   

12.
The objective of this work was to incorporate an ethylcellulose-based controlled-release coating suspension (Surelease, Colorcon) within a tablet matrix to provide a release controlling mechanism. Anhydrous theophylline, chlorpheniramine maleate, and acetaminophen were selected as model drug entities. Surelease dispersion was incorporated as the granulating agent either to the drug entity alone or to a blended mixture of drug and filler. Control batches included simple aqueous granulations and direct compression mixtures. Tablets were prepared on a single stroke tablet press. Dissolution was performed by the USP Method I (rotating basket) in purified water for the granulations and the resulting tablets. The uncompressed granulations did not exhibit prolonged release. In general, tablets prepared with the polymer suspension as the granulating agent were non-disintegrating, and exhibited slower dissolution than the control tablets. Release profiles were affected by drug concentration and excipient levels. By the dissolution method selected, complete drug release for the various formulations ranged from less than 1 hour to greater than 12 hours. The use of the polymer dispersion appears to enhance the processing characteristics of some materials, and to provide the formulator with control over drug release.  相似文献   

13.
Abstract

Eudragit® E30D was utilized in conjunction with talc and xanthan gum to coat theophylline granules via a Wurster-type air suspension column. Since the resin is extremely tacky and cannot be used alone as a coating formulation, different amounts of talc and xanthan gum were incorporated into the Eudragit® E30D suspension to allow for coating of theophylline granules. The release profile of theophylline from the coated granules was found to be dependent on the ratio of the additives to the resin used in the coating suspension as well as on the coating level applied to the final product. A sample of theophylline granules coated with a film-coating suspension containing 1.5:1.0: :Talc: Eudragit® E30D resin (calculated on dry basis) exhibited a zero order release profile. However, the in-vitro release rates of this formulation decreased on storage. As the ratio of talc and Eudragit® E30D was changed to 1:1, the coated theophylline granules showed a release profile that remained unchanged even after exposure at room temperature, 30° C and 40° C for three months. A stable theophylline formulation was achieved by curing the coated product at 40°C for 24 hours.  相似文献   

14.
Blends of hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC) were used to achieve zero order release of chlorpheniramine maleate (CM) from hydrophilic matrix capsules. Dynamic swelling/erosion and response surface measurements were made to provide an insight into the drug release behavior. The drug to total polymer and the HEC to NaCMC ratio influences the rate of drug release. NaCMC appears to influence water uptake and erosion of the matrix mixture. The factors by which zero-order drug release is achieved may include synchronization of the rates of water uptake and polymer erosion even though a constant diffusional pathlength may not be maintained. The combined mixture factorial design presented in this study allows for the characterization and optimization of the drug release profiles.  相似文献   

15.
Blends of hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC) were used to achieve zero order release of chlorpheniramine maleate (CM) from hydrophilic matrix capsules. Dynamic swelling/erosion and response surface measurements were made to provide an insight into the drug release behavior. The drug to total polymer and the HEC to NaCMC ratio influences the rate of drug release. NaCMC appears to influence water uptake and erosion of the matrix mixture. The factors by which zero-order drug release is achieved may include synchronization of the rates of water uptake and polymer erosion even though a constant diffusional pathlength may not be maintained. The combined mixture factorial design presented in this study allows for the characterization and optimization of the drug release profiles.  相似文献   

16.
The aim of this study was to develop colon-specific delivery systems for 5-aminosalicylic acid (5-ASA) using guar gum as a carrier. Core tablets containing 5-ASA were prepared by wet granulation with starch paste and were compression coated with coating formulations containing different quantities of guar gum (300, 200, 150, and 125 mg). In vitro drug release studies were carried out in simulated gastric and intestinal fluids and in pH 6.8 buffer containing rat cecal contents. The application of 175 mg of coating formulation containing 150 mg of guar gum over 5-ASA core tablets resulted in the release of less than 2% drug in simulated gastric and intestinal fluids and about 93% of 5-ASA in pH 6.8 buffer containing rat cecal contents. Differential scanning calorimetric (DSC) studies showed the absence of any interaction between 5-ASA and the excipients on storage at 45°C for 12 weeks. The study confirmed that selective delivery of 5-ASA to the colon can be achieved using guar gum as a carrier in the form of a compression coating over the drug core.  相似文献   

17.
The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT® RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT®/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40°C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT® films and those containing EUDRAGIT® and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40°C/75% RH and 25°C/60% RH.  相似文献   

18.
A high-performance liquid chromatographic method in the ion-pair mode was developed for the assay of chlorpheniramine maleate in commercial cough-cold mixtures. The method uses a µ Bondapak phenyl column and a mixture of acetonitrile-acetic acid-water (26.5:1.0:72.5, by volume, pH 2.4) containing 0.005M pentanesul-fonic acid sodium salt as the mobile phase. Chlorpheniramine maleate was well resolved from ten other active ingredients. A linear relationship was obtained between detector response at 254 nm and amounts of chlorpheniramine maleate injected ranging from 0.8 to 2.5 µg(r=0.996). A reproducibility study using a standard preparation gave a CV of 1.43% (n = 10). The average recovery values of chlorpheniramine maleate added in various amounts to a single-component tablet composite sample and to a multiple-component tablet composite sample were 99.1 and 100.9%, respectively. The assay of commercial tablets by the proposed method gave results which differed by 0.7 to 3.2% of declared from those obtained by the method of USP XX.  相似文献   

19.
The objective of this research was to evaluate the effect of hydroxypropylmethylcellulose (HPMC; Methocel K4M Premium) level and type of excipient on theophylline release and to attempt to predict the drug release from hydrophilic swellable matrices. Formulations containing theophylline anhydrous (10% w/w), Methocel K4M Premium (10%, 30%, and 40% w/w), different diluents (Lactose Fast Flo, Avicel PH-101, and Emcompress), and magnesium stearate (0.75% w/w) were prepared by direct compression at a target weight of 450 mg ± 5% and target hardness of 7 kp to 10 kp. It was found that, as the percentage of polymer in all formulations increased from 10% to 30% or 40%, the drug release decreased. However, there was no significant difference in drug release between formulations containing 30% polymer and formulations containing 40% polymer. At low levels of polymer, the drug release is controlled by the type of diluent used. Avicel PH-101 formulation gave the highest release, while its corresponding Emcompress formulation gave the lowest release. Formulations containing 30% or 40% polymer gave the same release profiles irrespective of the type of diluent used. In all cases, replacement of a portion of Methocel K4M Premium with any diluent resulted in increase of theophylline release. In addition, this investigation demonstrated that the drug release from hydrophilic swellable matrices can be predicted using only a minimum number of experiments.  相似文献   

20.
Sulfamethoxazole microcapsules with polysaccharide gum, i.e. xanthan gum and guar gum, were prepared by employing a spray drying technique. The aqueous or the ammonium hydroxide solution of the gum containing the drug with or without colloidal silica was atomized with a centrifugal wheel atomizer rotated at 40000 rpm into a drying chamber held at 140±10°C. By formulation with colloidal silica, particle size of the resultant product increased, leading to improve the flowability and packability for the tableting. Polymorphic sulfamethoxazole mixture of Form I, II and III was produced in the formulation with cellulose acetate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号