首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In our recent papers, we suggested a new two‐stage time‐integration procedure for linear elastodynamics problems and showed that for long‐term integration, time‐integration methods with zero numerical dissipation are very effective for all linear elastodynamics problems, including structural dynamics, wave propagation and impact problems. In this paper, we have derived a new exact, closed‐form a priori global error estimator for time integration of linear elastodynamics by the trapezoidal rule and the high‐order time continuous Galerkin (TCG) methods with zero numerical dissipation (these methods correspond to the diagonal of the Padé approximation table). The new a priori global error estimator allows the selection of the size (the number) of time increments for the indicated time‐integration methods at the prescribed accuracy as well as the comparison of the effectiveness of the second‐ and high‐order TCG methods at different observation times. A numerical example shows a good agreement between theoretical and numerical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Benchmark problems for wave propagation in elastic materials   总被引:1,自引:1,他引:0  
The application of the new numerical approach for elastodynamics problems developed in our previous paper and based on the new solution strategy and the new time-integration methods is considered for 1D and 2D axisymmetric impact problems. It is not easy to solve these problems accurately because the exact solutions of the corresponding semi-discrete elastodynamics problems contain a large number of spurious high-frequency oscillations. We use the 1D impact problem for the calibration of a new analytical expression describing the minimum amount of numerical dissipation necessary for the new time-integration method used for filtering spurious oscillations. Then, we show that the new numerical approach for elastodynamics along with the new expression for numerical dissipation for the first time yield accurate and non-oscillatory solutions of the considered impact problems. The comparison of effectiveness of linear and quadratic elements as well as rectangular and triangular finite elements for elastodynamics problems is also considered.  相似文献   

3.
A new time finite-element method based on the extrapolation technique and the Galerkin time finite-element method is presented. In this method, the second-order governing differential equations of motion for dynamic problems are rewritten as a set of first order differential equations in state space. The standard Galerkin method is then employed for the temporal discretization. The algorithm is first-order accurate only. Based on the first-order Galerkin time finite-element formulation, the extrapolation technique is introduced to improve the order of accuracy. It is achieved by expressing the numerical amplification matrix of higher-order algorithm as a linear combination of the basic amplification matrices evaluated at selected instances of time. The matrices are combined with different weighting factors. The pairs of the selected instance of time and the corresponding weighting factors are free parameters. Unconditionally stable higher-order accurate formulations can be derived by properly choosing the free parameters. Algorithms up to fourth-order accurate are presented in this paper. Detailed analyses on stability, numerical dissipation and numerical dispersion are also given. Comparisons of the present algorithms with some well-known time-integration methods are presented to demonstrate the versatility of the present method, in particular its accuracy in the higher-order formulations.  相似文献   

4.
It is known that the reduction in the finite element space discretization error for elastodynamics problems is related to the reduction in numerical dispersion of finite elements. In the paper, we extend the modified integration rule technique for the mass and stiffness matrices to the dispersion reduction of linear finite elements for linear elastodynamics. The analytical study of numerical dispersion for the modified integration rule technique and for the averaged mass matrix technique is carried out in the 1-D, 2-D and 3-D cases for harmonic plane waves. In the general case of loading, the numerical study of the effectiveness of the dispersion reduction techniques includes the filtering technique (developed in our previous papers) that identifies and removes spurious high-frequency oscillations. 1-D, 2-D and 3-D impact problems for which all frequencies of the semi-discrete system are excited are solved with the standard approach and with the new dispersion reduction technique. Numerical results show that compared with the standard mass and stiffness matrices, the simple dispersion reduction techniques lead to a considerable decrease in the number of degrees of freedom and computation time at the same accuracy, especially for multi-dimensional problems. A simple quantitative estimation of the effectiveness of the finite element formulations with reduced numerical dispersion compared with the formulation based on the standard mass and stiffness matrices is suggested.  相似文献   

5.
In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison with the conventional moving least-squares (MLS) approximation function, the algebraic equation system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized system equations, and the Newmark time integration method for the time history analyses. In the modeling process, the penalty method is used to impose the essential boundary conditions to obtain the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the finite element method.  相似文献   

6.
The present paper describes a procedure that improves efficiency, stability and reduces artificial energy dissipation of the standard time-domain direct boundary element method (BEM) for acoustics and elastodynamics. Basically, the developed procedure modifies the boundary element convolution-related vector, being very easy to implement into existing codes. A stabilization parameter is introduced into the recent-in-time convolution operations and the operations related to the distant-in-time convolution contributions are approximated by matrix interpolations. As it is shown in the numerical examples presented at the end of the text, the proposed formulation substantially reduces the BEM computational cost, as well as its numerical instabilities.  相似文献   

7.
In this paper a new time discontinuous Galerkin (TDG) formulation for non‐linear elastodynamics is presented. The new formulation embeds an energy correction which ensures truly energy decaying, thus allowing to achieve unconditional stability that, as shown in the paper, is not guaranteed by the classical TDG formulation. The resulting method is simple and easily implementable into existing finite element codes. Moreover, it inherits the desirable higher‐order accuracy and high‐frequency dissipation properties of the classical formulation. Numerical results illustrate the very good performance of the proposed formulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes an adaptive numerical framework for cohesive fracture models based on a spacetime discontinuous Galerkin (SDG) method for elastodynamics with elementwise momentum balance. Discontinuous basis functions and jump conditions written with respect to target traction values simplify the implementation of cohesive traction–separation laws in the SDG framework; no special cohesive elements or other algorithmic devices are required. We use unstructured spacetime grids in a h‐adaptive implementation to adjust simultaneously the spatial and temporal resolutions. Two independent error indicators drive the adaptive refinement. One is a dissipation‐based indicator that controls the accuracy of the solution in the bulk material; the second ensures the accuracy of the discrete rendering of the cohesive law. Applications of the SDG cohesive model to elastodynamic fracture demonstrate the effectiveness of the proposed method and reveal a new solution feature: an unexpected quasi‐singular structure in the velocity response. Numerical examples demonstrate the use of adaptive analysis methods in resolving this structure, as well as its importance in reliable predictions of fracture kinetics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.  相似文献   

10.
In one dimension, Petrov—Galerkin nonsymmetric weighting for the convective diffusion equation can be interpreted as an added dissipation. The addition of an appropriate amount of dissipation can therefore give the same oscillation-free solutions as the ‘unwinding’, Petrov—Galerkin, finite element methods. The ‘balancing dissipation’ is optimally chosen so that excessive dissipation does not occur. A scheme is presented for extending this approach to two-dimensional problems, and numerical examples show that the new method can be used with improved computational efficiency.  相似文献   

11.
A new family of explicit single-step time integration methods with controllable high-frequency dissipation is presented for linear and non-linear structural dynamic analyses. The proposed methods are second-order accurate and completely explicit with a diagonal mass matrix, even when the damping matrix is not diagonal in the linear structural dynamics or the internal force vector is a function of velocities in the non-linear structural dynamics. Stability and accuracy of the new explicit methods are analysed for the linear undamped/damped cases. Furthermore, the new methods are compared with other explicit methods.  相似文献   

12.
In the present paper one‐step implicit integration algorithms for non‐linear elastodynamics are developed. The discretization process rests on Galerkin methods in space and time. In particular, the continuous Galerkin method applied to the Hamiltonian formulation of semidiscrete non‐linear elastodynamics lies at the heart of the time‐stepping schemes. Algorithmic conservation of energy and angular momentum are shown to be closely related to quadrature formulas that are required for the calculation of time integrals. We newly introduce the ‘assumed strain method in time’ which enables the design of energy–momentum conserving schemes and which can be interpreted as temporal counterpart of the well‐established assumed strain method for finite elements in space. The numerical examples deal with quasi‐rigid motion as well as large‐strain motion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.  相似文献   

14.
We present a new method for simulating incompressible immiscible two‐phase flow in porous media. The semi‐implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of freedom is significantly reduced compared to standard interior penalty discontinuous Galerkin methods. Several numerical examples illustrate the accuracy and robustness of the method. These examples include verification of convergence rates by manufactured solutions, common one‐dimensional benchmarks, and realistic discontinuous permeability fields.  相似文献   

15.
A comprehensive study of A-stable linear two-step time integration methods for structural dynamics analysis is presented in this paper. An optimal A-stable linear two-step (OALTS) time integration method is revealed with desirable performance on low-frequency accuracy and high-frequency numerical dissipation properties. The OALTS time integration method is implemented in a direct integration manner for the second-order equations of structural dynamics; is implicit, A-stable, and second-order accurate in displacement, velocity, and acceleration, simultaneously; is easily started; and is numerical dissipation controllable. The OALTS time integration method shows desirable performance on spectral radius distribution, dissipation and dispersion errors, and overshooting behavior, where the results of some typical algorithms in the literature are also compared. Benchmark examples with/without physical damping are performed to validate the accuracy, stability, and efficiency of the OALTS time integration method.  相似文献   

16.
17.
This paper develops a modified Trefftz method (MTM) associated with the group-preserving scheme (GPS) to deal with the two-dimensional non-linear sloshing problem. For non-linear sloshing phenomena, the conventional numerical method may encounter numerical instabilities and numerical dissipation, as the coefficient matrix obtained from the conventional numerical method is ill-posed, and the free surface exhibits non-linear kinematics. To overcome these problems, we introduce the concept of controlled volume into the numerical procedure to prevent the elevation from vanishing, and we take the characteristic length into account to maintain the stability of the new numerical method. Moreover, the use of the GPS eliminates the need to use second-order derivatives, thus increasing the numerical efficiency, and weighting factors can be used to observe the vanishing of the velocity potential. Comparisons of results of the present study with those in the literature show that the numerical results are better than those obtained using previous methods. The method developed here is a simple and stable way to cope with the non-linear sloshing problem.  相似文献   

18.
谢丹  徐敏 《工程力学》2015,32(1):1-9
基于von Karman 大变形理论及活塞理论建立超音速流中壁板的气动弹性方程。采用特征正交分解法 (POD)结合向伽辽金法(Galerkin)的映射这样一种半解析法建立降阶模型(ROM)求解三维壁板的非线性气动弹性问题,并与传统的Galerkin法对比。发现并证明了POD数值模态与伽辽金法简谐基函数之间转换矩阵的正交性,从而简化了POD降阶模型的建立过程。通过数值算例考察了POD法的准确性、收敛性及高效性。结果表明POD降阶模型能够以更少的模态,更高的计算效率达到与Galerkin法同样的精度。以长宽比4为例,POD法以2个模态,3s的时间计算了壁板的振动响应;而Galerkin法需要16个模态,900s的时间。  相似文献   

19.
A new particle Galerkin method is introduced to solve the Naiver-Stokes equations in a Lagrangian fashion. The present method aims to suppress key numerical instabilities observed in the strong form Lagrangian particle methods such as smoothed particle hydrodynamics (SPH), incompressible SPH, and moving particle semi-implicit for incompressible free surface flow simulations. It is well-known that strong form Lagrangian particle methods usually rely on ad hoc particle stabilization techniques based on particle shifting, artificial viscosity, or density-invariant condition due to some formulation inconsistency issues. In the present method, we introduce a momentum-consistent velocity smoothing algorithm which is used to combine with the second-order rotational incremental pressure-correction scheme to stabilize the pressure field as well as to enforce the consistency of Neumann boundary condition. To further impose slip-free or nonslip boundary conditions for the fluid flow, a penalty method which is free of ghost or dummy particles is developed. Finally, a particle insertion-deletion adaptive scheme is proposed when the violent fluid flow is considered. Four numerical examples are studied to validate the accuracy and stability of the present method.  相似文献   

20.
Using non-orthogonal polynomial expansions, a recursive approach is proposed for the random response analysis of structures under static loads involving random properties of materials, external loads, and structural geometries. In the present formulation, non-orthogonal polynomial expansions are utilized to express the unknown responses of random structural systems. Combining the high-order perturbation techniques and finite element method, a series of deterministic recursive equations is set up. The solutions of the recursive equations can be explicitly expressed through the adoption of special mathematical operators. Furthermore, the Galerkin method is utilized to modify the obtained coefficients for enhancing the convergence rate of computational outputs. In the post-processing of results, the first- and second-order statistical moments can be quickly obtained using the relationship matrix between the orthogonal and the non-orthogonal polynomials. Two linear static problems and a geometrical nonlinear problem are investigated as numerical examples in order to illustrate the performance of the proposed method. Computational results show that the proposed method speeds up the convergence rate and has the same accuracy as the spectral finite element method at a much lower computational cost, also, a comparison with the stochastic reduced basis method shows that the new method is effective for dealing with complex random problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号