首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barium-containing NO x storage catalyst showed serious deactivation under thermal exposure at high temperatures. To elucidate the thermal deterioration of the NO x storage catalyst, four types of model catalyst, Pt/Al2O3, Ba/Al2O3, Pt–Ba/Al2O3, and a physical mixture of Pt/Al2O3 + Ba/Al2O3 were prepared and their physicochemical properties such as BET, NO TPD, TGA/DSC, XRD, and XPS were evaluated while the thermal aging temperature was increased from 550 to 1050°C. The fresh Pt–Ba/Al2O3 showed a sorption capacity of 3.35 wt%/g-cat. but the aged one revealed a reduced capacity of 2.28 wt%/g-cat. corresponding to 68% of the fresh one. It was found that this reduced sorption capacity was directly related to the deterioration of the NO x storage catalyst by thermal aging. The Ba on Ba/Al2O3 and Pt–Ba/Al2O3 catalysts began to interact with alumina to form Ba–Al solid alloy above 600°C and then transformed into stable BaAl2O4 having a spinel structure. However, no phase transition was observed in the Pt/Al2O3 catalyst having no barium component, even after aging at 1050°C.  相似文献   

2.
An investigation was conducted of noble metal and metal oxide catalysts deposited on Al2O3. The noble metals Pt, Pd, Rh the metal oxides CuO, SnO2, CoO, Ag2O, In2O3, catalysts were examined. Also investigated were noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts prepared by single sol–gel method. Both were studied for their capability to reduce NO by propene under lean conditions. In order to improve the catalytic activity and the temperature window, the intermediate addition propene between a Pt/Al2O3 oxidation and metal oxide combined catalyst system was also studied. Pt/Al2O3 and In2O3/Al2O3 combined catalyst showed high NO reduction activity in a wider temperature window, and more than 60% NO conversion was observed in the temperature range of 300–550 °C.  相似文献   

3.
A series of catalysts, NiSO4/SiO2–Al2O3, for ethylene dimerization were prepared by the impregnation method using aqueous solution of nickel sulfate. Although SiO2–Al2O3 without NiSO4 was inactive as catalyst for ethylene dimerization, the SiO2–Al2O3 with NiSO4 exhibited high catalytic activity even at room temperature. The high catalytic activity of NiSO4/SiO2–Al2O3 was closely correlated with the increase of acidity and acid strength due to the addition of NiSO4. The sample having 15 wt% of NiSO4 and calcined at 500 °C for 1.5 h exhibited maxima for catalytic activity and acidity. In view of IR results of CO adsorbed on NiSO4/SiO2–Al2O3, it is concluded that the active sites responsible for ethylene dimerization consist of a low-valent nickel, Ni+, and an acid.  相似文献   

4.
Pt-based catalysts, supported on Al2O3, SiO2 and SiO2–Al2O3, were prepared by incipient wetness impregnation and tested in the gas phase hydrogenation of maleic anhydride at atmospheric pressure and 240 °C. In these conditions, the hydrogenolytic activity pattern was: Pt/SiO2 > Pt/Al2O3 > Pt/SiO2–Al2O3, which is just the opposite of the support acidity trend. These metal Pt-based catalysts showed high selectivity to propionic acid, which was always higher than 80%. The selectivity pattern to this product was: Pt/Al2O3 > Pt/SiO2 > Pt/SiO2–Al2O3. Both activity and selectivity patterns may be explained on the basis of metal-support interaction and support acidity.  相似文献   

5.
Pt–Co/Al2O3 catalysts were prepared with different Co/Pt weight ratios (0.3–1.8) and their performances for preferential oxidation of CO (PROX) were tested. The activity of the catalyst increased with Co/Pt weight ratio due to the increase of the area of active phase by interaction between Pt and Co species. The 13-layered micro-channel reactor was prepared by stacking the plates coated with Pt–Co/Al2O3 catalyst. The reactor was divided into three parts (inlet, middle, and outlet) to evaluate the performance of each part. Most of O2 supplied was depleted at the inlet part and the temperature gradient of the reactor occurred due to the high exothermicity of oxidations of CO and hydrogen. In order to prevent hot spot and temperature gradient, the reactor with non-uniform distribution of the catalyst (partially coating the catalyst on the channels) was prepared. The prepared reactor showed uniform temperature distribution and exhibited excellent performance for PROX.  相似文献   

6.
The nature and relative populations of adsorbed species formed on the surface of un-promoted and sodium-promoted Pt catalysts supported either on bare Al2O3 or CeO2/La2O3-modified Al2O3, were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under simulated automobile exhaust conditions (CO + NO + C3H6 + O2) at the stoichiometric point. The DRIFT spectra indicate that interaction of the reaction mixture with the Pt/Al2O3 catalyst leads mainly to formation of formates and acetates on the support and carbonyl species on partially positively charged Pt atoms (Ptδ+). Although enrichment of Al2O3 with lanthanide elements (CeO2 and La2O3) does not significantly modify the carboxylate species formed on the support, it causes significant modification of the oxidation state of Pt, as indicated by the appearance of a substantial population of carbonyl species on reduced Pt sites (Pt0–CO). This modification of the Pt component is enhanced when Na-promotion is used, leading to formation of carbonyl species only on electron enriched Pt (i.e., fully reduced Pt0 sites) and to the formation of NCO on these Pt entities (2180 cm−1). The latter are thought to result from enhanced NO dissociation at Na-modified Pt sites. These results correlate well with observed differences in the catalytic performance of the three different systems.  相似文献   

7.
Three ferrierite (FER) and five ZSM-5 (MFI) zeolites with SiO2Al2O3 ratio ranging from 27 to 2000 are tested as catalysts for the skeletal isomerization of 1-butene at 350–450°C and atmospheric total pressure in order to study the influence of acidity and pore structure of zeolite on conversion and selectivity. The catalytic and NH3 temperature-programmed desorption results from FER and MFI catalysts with the same SiO2/Al2O3 ratio reveal that the pore structure of FER zeolite rather than its acidity may play an important role in achieving high selectivity for the skeletal isomerization of 1-butene to isobutene.  相似文献   

8.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

9.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

10.
A series of catalysts made of tungsten oxide loaded on SiO2, γ-Al2O3, SiO2–Al2O3 and silica deposited γ-alumina are tested for 1-butene metathesis. Among these catalysts, the catalyst 6W/20SiO2/Al2O3 gives the highest activity for 1-butene metathesis reaction with 1-butene conversion up to 71 mol% and the yield of propene up to 21 mol%. The excellent catalytic activity is related to the moderate dispersion of tungsten oxide and the suitable acidity of the support. The dispersion of WOx species and the acidity of supports were studied by characterization of XRD, Raman spectra, UV–vis, H2-TPR and NH3-TPD in detail. The surface properties of silica modified γ-alumina leads to the moderate aggregation of supported tungsten oxide, which appears to be more effective for 1-butene metathesis at the low temperature of 453 K. Optimized activity was realized by tuning the dispersion of tungsten species on silica deposited alumina.  相似文献   

11.
A series of ultra-stable Y-type (USY) zeolites with different SiO2/Al2O3 ratios in the range of 10–80 were used as supports for preparing Pd/USY at 2 wt% Pd loading. The FT-IR of hydroxyl groups of USY zeolites, the n-butylamine chemisorption and the temperature-programmed desorption were used in combination to characterize the zeolite acidity. TPR, H2-TPD and chemisorption using H2 were used to characterize the Pd reduction and dispersion. The hydrogenation of naphthalene was conducted at 200 °C in the presence of benzothiophene at different sulfur/metal ratios. The hydrogenation activity, selectivity, and the sulfur tolerance strongly depended on the SiO2/Al2O3 ratio (thus the acidity) of the zeolites. The activity decreased with increasing SiO2/Al2O3 in this range. The IR and n-butylamine TPD showed that both the amount and strength of Brönsted acidity decreased with the increase of the SiO2/Al2O3 ratio. The good relationship between the acidity modification and catalytic performance suggests that the sulfur tolerance of Pd/USY zeolite might be due to the desired metal-support interaction, which resulted in larger amount of electron-deficient Pd. However, as shown in TGA and TPO-IR studies, the higher hydrogenation performance on more acidic zeolite also caused higher amount of carbonaceous species on the catalyst.  相似文献   

12.
A range of Pt supported catalysts have been evaluated for the total oxidation of naphthalene. Catalysts contained 0.5 wt% Pt on a range of supports (γ-Al2O3, TiO2, SiO2, SnO2, and CeO2). SiO2 was the best support, the 0.5%Pt/SiO2 catalyst showing a conversion to carbon dioxide of over 90% at 200 °C (100 vppm naphthalene, GHSV = 45,000 h−1). The catalyst also showed a considerably higher activity (in the temperature range 100–175 °C) than a CeO2 catalyst recently reported to be one of the most effective catalysts for the total oxidation of naphthalene. The high activity of the 0.5%Pt/SiO2 catalyst has been attributed to the relatively low dispersion and relatively large size of Pt particles. Furthermore, due to the acidic and non-reducible nature of the SiO2, platinum is expected to have a weak interaction with the support. XPS data identified the presence of Pt0 on the surface and this contributes to the high activity.  相似文献   

13.
Commercial Cu–ZnO–Al2O3 catalysts are used widely for steam reforming of methanol. However, the reforming reactions should be modified to avoid fuel cell catalyst poisoning originated from carbon monoxide. The modification was implemented by mixing the Cu–ZnO–Al2O3 catalyst with Pt–Al2O3 catalyst. The Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture created a synergetic effect because the methanol decomposition and the water–gas shift reactions occurred simultaneously over nearby Pt–Al2O3 and Cu–ZnO–Al2O3 catalysts in the mixture. A methanol conversion of 96.4% was obtained and carbon monoxide was not detected from the reforming reaction when the Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture was used.  相似文献   

14.
Oscillation behaviour of the oxidation of CO (0.2–2.2%) in air over Pt wire coils and over Pt/Al2O3 catalysts deposited onto the coils (pellistors) has been investigated. The waveforms differ considerably between the two catalytic systems. Over unsupported Pt at 240–260° C, regular oscillations were accompanied by slowly declining activity and by deposition of carbon. Over supported Pt at 110–180°C, relatively complex but sustained oscillation occurred by a different mechanism. This oscillation was greatly enhanced by H2 (0.25–1.0%), and may involve fluctuations in the concentrations of CO and H2 around the supported catalyst.  相似文献   

15.
The partial oxidation of methane was studied on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2, and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst, For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane, and its behavior was explained by a change in the reaction mechanism.  相似文献   

16.
The synthesis of SiO2, Al2O3, BaO, PbO, B2O3, ZnO, and SiO2–Al2O3–BaO fine-particle powders was studied experimentally and optimized. The metal oxides, silicon, and an SiO2–Al2O3–BaO mixture were treated in an argon–oxygen or air high-frequency induction plasma, whereupon amorphous layers were deposited onto silicon substrates. Heat treatment of these layers at 1473 K for 15 min yielded continuous amorphous dielectric films with desired properties.  相似文献   

17.
The partial oxidation of methane was studio on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2 and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst. For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane and its behaviour was explained by a change in the reaction mechanism.  相似文献   

18.
The acidity of H-beta zeolites with SiO2/Al2O3 ratios ranging from 20 to 350 was characterized by NH3-TPD profiles and FTIR spectra of adsorbed pyridine. As SiO2/Al2O3 ratios of the H-beta zeolites increased, NH3-TPD acidic amount of the samples is decreased. The IR bands of the adsorbed pyridine on the zeolites are also decreased with the increased SiO2/Al2O3 ratios. The batch reaction of propylene and benzene was carried out in liquid phase at 423 K over H-beta zeolites. The selectivity to isopropylbenzene was high. The catalytic activity of H-beta zeolites is in direct proportion to the acidic amount of the zeolites in general. H-beta zeolite of SiO2/Al2O3=27, which contains the highest amount of Brønsted acid sites as indicated by FTIR spectra of adsorbed pyridine, is the most reactive catalyst in the alkylation reaction. In continuous liquid-phase reactions, high propylene conversion and isopropylbenzene selectivity can be achieved at 413–453 K with benzene to propylene mole ratio from 4 to 8. The catalytic activity and selectivity of the H-beta zeolite do not change after 1100 h of reaction.  相似文献   

19.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

20.
The objective of the present study was to select the optimal catalyst and operating conditions for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen, in a trickle bed reactor. When CaO, Ce2O3 or MgO was added as a promoter to the Ni/kieselguhr catalyst, the BET and Ni surface areas were increased. In the reaction for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen in a batch reactor, a Ni–MgO/kieselguhr catalyst showed the highest activity. In addition, the catalyst using Na2CO3 as a precipitant showed the highest activity. According to the result of an experiment to find the optimal reaction conditions for C9-alcohol synthesis, using C9-aldehyde and hydrogen in a trickle bed reactor loaded with Ni–MgO/kieselguhr catalyst, the highest yield of C9-alcohol was 91.5 wt% at 130 °C, 400 psi and WHSV = 3. The C9-aldehyde hydrogenation performance of the Ni–MgO/kieselguhr catalyst was similar to that of a Cu/ZnO/Al2O3 catalyst, but superior to that of Cu–Ni–Cr–Na/Al2O3 and Ni–Mo/Al2O3 catalysts. In a long-term catalysis test, the Ni–MgO/kieselguhr catalyst showed higher stability than the Cu/ZnO/Al2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号