首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于正则化RBF神经网络的钢包精炼炉电极系统智能建模   总被引:12,自引:1,他引:12  
通过RBF神经网络和模糊推理系统的比较,得出正则化RBF神经网络的输出特性,在此基础上利用改进的最近邻聚类算法确定网络的隐层节点个数和高斯函数中心,并估计输出层权值。仿真结果表明了所提方案的有效性。  相似文献   

2.
储岳中 《微机发展》2008,18(3):196-199
在RBF神经网络的各种学习算法中,最近邻聚类算法学习时间短、计算量小,不需要事先确定隐单元的个数,完成聚类所得到的网络是最优的,并且可以在线学习,是一种自适应聚类学习算法,非常适合非线性实时系统的应用。但常规最近邻聚类算法在实时性要求较高的系统预测中学习时间相对较长。针对这一问题,提出了系统离线学习时采用减聚类算法,在线学习时采用改进的最近邻聚类算法,并变步长修正聚类半径和限制学习样本数。在函数拟合实验中,这种改进算法明显缩短了RBF神经网络的学习时间,在钢包精炼炉电极系统的在线辨识中的成功应用进一步表明对最近邻聚类算法的改进是有效的。  相似文献   

3.
针对机械手系统具有非线性时变、多变量、强耦合的特点,提出一种基于RBF神经网络逆系统的机械手解耦控制策略。首先证明了系统的可逆性,进一步通过神经网络在线逆辨识建立机械手的神经网络逆系统模型,并将辨识得到的逆模型作为控制器模型与机械手系统串联,构成伪线性复合系统,实现了将具有强耦合特性的多变量输入/输出机械手系统解耦成单个独立的伪线性对象。最后以两关节机械手为仿真对象进行了仿真,仿真结果验证了本方案的有效性和可行性。  相似文献   

4.
孙涛  闫思佳  曹广益  朱新坚 《计算机仿真》2006,23(2):200-203,214
常规能源短缺的今天,开发利用新型清洁、绿色能源已成为各国科学家共同追求的目标。质子膜燃料电池(PEMFC)以其高功率密度,启动迅速,无污染等优点成为21世纪首选清洁能源系统。但其原理涉及热力学、电化学、流体力学、传质学等理论,形成一个非线性复杂系统,难以建立数学模型。因此,采用一种动态白适应网络即最近邻聚类径向基函数神经网络,它能够动态调节网络的规模和参数,具有较强的逼近能力以及自学习能力。并利用测试数据作为训练样本,在氢气流速给定的条件下,以空气(或氧气)压力和冷却水流速作为模型的输入量,电池的电压为输出量,建立了在工作温度为60℃和80℃时的PEMFC电特性模型。表明该方法具有简单、可行、精度高等优点。并为PEMFC控制系统的设计和电池性能的优化提供了基本依据。  相似文献   

5.
吴雪娇  孙明轩 《计算机工程》2010,36(23):162-164,167
在常规RBF神经网络中采用时变权值,将其应用于非线性时变系统的建模。采用减聚类算法确定网络隐含层神经元数与基函数中心参数,以迭代学习最小二乘算法修正神经网络时变权值,给出时变RBF网络的学习算法。分析表明,迭代学习最小二乘权值修正算法保证了网络时变权值的有界性,迭代误差收敛于零。仿真结果验证了该方法在非线性时变系统建模方面的有效性。  相似文献   

6.
该文用RBF神经网络建立了转炉提钒冷却剂预报模型。RBF网络的中心的选取采用了可以在线学习的最近邻聚类算法。为了进一步优化网络中心,提出了基于密度排名的最近邻聚类算法。该算法聚类前先将样本按其在样本空间的密度进行了排序,聚类过程始于样本空间最密集处。实践证明,该算法应用于提钒冷却剂预报模型的建立是合理的,可行的。  相似文献   

7.
樊强  何东健 《微计算机信息》2007,23(10):262-263
针对目前火灾探测技术难以满足实际需要的问题,在分析RBF网络结构特点及最近邻聚类学习算法的基础上,提出用RBF神经网络建立火灾探测器模型,以火灾初期实验得到的环境温度、烟雾浓度、CO含量为输入,以明火概率、阴燃火概率、无火概率为输出对RBF网络进行训练,并进行仿真试验,结果表明,实际输出与期望输出的相差较小。  相似文献   

8.
磨矿分级作业是选矿生产过程中至关重要的环节,磨矿粒度的好坏直接影响到浮选的精矿品位和回收率;通过分析实际磨矿过程的生产状况和基本的生产数据,磨矿粒度存在在线检测成本高、滞后时间长、实现困难等问题;在分析RBF神经网络结构特点的基础上,提出用RBF网络建立磨矿粒度预测模型,网络中心的选取采用可以在线学习的最近邻聚类算法;仿真结果表明,该网络非线性处理能力和逼近能力强,学习时间短,网络运算速度快,模型精度满足工艺要求。  相似文献   

9.
水处理系统的神经网络建模研究   总被引:3,自引:0,他引:3  
对以臭气化一生物活性炭技术为基础的水质处理系统的辨识问题进行研究,给出了基于BP神经网络的建模方案。采用水质处理系统中的CODM和臭氧投放量对某水质处理系统进行建模,实验结果证明了该方法的有效性。  相似文献   

10.
沈捷  王莉  林锦国 《微计算机信息》2007,23(34):294-296
针对水处理过程非线性、时变和大滞后的特点,本文采用RBF和BP神经网络分别建立了水处理过程模型,利用水厂实际运行数据对两个模型分别进行了训练和检验。与BP神经网络模型相比,RBF神经网络模型具有逼近能力强、收敛速度快等优点。该模型可以实现对水处理过程的在线辨识,并可进一步用于该过程的神经网络预测控制。  相似文献   

11.
针对径向基函数神经网络参数难以设置以及因此而导致的网络隐层结构不明朗的问题,提出了一种应用控制种群多样性的微粒群( ARPSO)优化径向基函数神经网络( RBF)的方法。通过引入“吸引”和“扩散”因子对基本微粒群算法进行改进,并将改进的微粒群算法用于RBF聚类半径的优化,进而能够合理地确定RBF的隐层结构。将用ARPSO优化的RBF神经网络应用于非线性函数逼近,经实验仿真验证,与基本微粒群( PSO)算法、收缩因子微粒群( CFA PSO)算法优化的RBF神经网络相比较,在收敛速度和识别精度上有了显著的提高。  相似文献   

12.
本文给出一种在线学习RBF神经网络的快速算法,并设计了在线学习RBF神经网络的MARAC。通过仿真表明,在线RBF神经网络的MRAC计算量小、在线学习、跟踪时间短、控制精度高的优点。  相似文献   

13.
基于改进型RBF神经网络辨识的PID控制   总被引:1,自引:0,他引:1  
针对工业控制领域复杂非线性时变系统.提出了基于改进型RBF神经网络的PID参数在线自整定方法。采用改进型RBF神经网络辨识器在线辨识系统模型,自动调整PID控制器参数,实现系统的智能控制。仿真结果表明,与常规RBF神经网络PID控制方法相比,该方法具有控制精度高、响应速度快的优点,并且具备较强的自适应性和鲁棒性。  相似文献   

14.
改进的RBF神经网络在非线性系统中的应用   总被引:1,自引:0,他引:1  
在RBF神经网络的各种学习算法中,最近邻聚类算法学习时间短、计算量小,不需要事先确定隐单元的个数,完成聚类所得到的网络是最优的,并且可以在线学习,是一种自适应聚类学习算法,非常适合非线性实时系统的应用.但常规最近邻聚类算法在实时性要求较高的系统预测中学习时间相对较长.针对这一问题,提出了系统离线学习时采用减聚类算法,在线学习时采用改进的最近邻聚类算法,并变步长修正聚类半径和限制学习样本数.在函数拟合实验中,这种改进算法明显缩短了RBF神经网络的学习时间,在钢包精炼炉电极系统的在线辨识中的成功应用进一步表明对最近邻聚类算法的改进是有效的.  相似文献   

15.
针对热电偶的测量精度问题,建立了热电偶传感器的数学模型。此数学模型采用RBF神经网络,利用带遗忘因子的梯度下降算法进行网络参数的调整,并给出了建模步骤。实际结果表明,该模型具有较高的精度。  相似文献   

16.
蔡兵 《微计算机信息》2005,21(34):155-156
针对热电偶的测量精度问题,建立了热电偶传感器的数学模型.此数学模型采用RBF神经网络,利用带遗忘因子的梯度下降算法进行网络参数的调整,并给出了建模步骤.实际结果表明,该模型具有较高的精度.  相似文献   

17.
基于具有电弧炉电极系统的非线性时变特性,设计了一种基于神经网络的参数自整定PID控制器。该控制器采用三个基于最近邻聚类方法的RBF神经网络快速学习算法,通过实时在线辨识,建立被控系统的精确模型并得到精确的Jacobian信息分别提供给三个BP神经网络,从而实现了三相耦合系统的精确控制,仿真结果证明了这种方法的可行性和有效性。  相似文献   

18.
基于改进RBF网络的乙烯纯度软测量建模方法   总被引:1,自引:0,他引:1  
对兰州某石化厂乙烯精馏塔产品质量进行了软测量建模研究,针对经典RBF神经网络建模时存在的问题,提出了一种改进的RBF网络结构,增加了从输入直接到输出的线性环节,应用最近邻聚类和最陡下降法训练改进后的网络,实验结果表明改进后的网络具有较好的网络性能,适用于乙烯精馏塔产品质量的软测量建模和预测.  相似文献   

19.
基于RBF神经网络的抗噪语音识别   总被引:1,自引:0,他引:1  
针对目前在噪音环境下语音识别系统性能较差的问题,利用RBF神经网络具有最佳逼近性能、训练速度快等特性,分别采用聚类和全监督训练算法,实现了基于RBF神经网络的抗噪语音识别系统。聚类算法的隐含层训练采用K-均值聚类算法,输出层的学习采用线性最小二乘法;全监督算法中所有参数的调整基于梯度下降法,它是一种有监督学习算法,能够选出性能优良的参数。实验表明,在不同的信噪比下,全监督算法较之聚类算法有更高的识别率。  相似文献   

20.
基于RBF神经网络的网络流量建模及预测   总被引:7,自引:1,他引:7  
随着计算机网络的迅速发展,目前的网络规模极为庞大和复杂,网络流量预测对于网络管理具有至关重要的意义。根据实际网络中测量的大量网络流量数据,建立了一个基于RBF神经网络的流量模型,给出了RBF神经网络的结构设计及基于正交最小二乘的学习算法,并基于该流量模型对网络流量进行预测。仿真结果表明,该模型具有较高的预测效果,相对于传统线性模型及BP神经网络模型具有更高的预测精度和良好的自适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号