首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The cultivation of short rotation coppices (SRC) on agricultural land represents an economically and environmentally promising option for sustainable provision of bioenergy. Not only the further development of efficient harvesting machinery, but also the development of harvest-optimised storage systems are necessary to implement cost-efficient cultivation and use strategies for SRC in practice. The storage of fine wood chips from poplar harvest with a forage harvester results in high dry matter losses of up to 25%. Tractor-mounted mower-chippers can harvest coarse wood chips that might possess more favourable storage and drying properties. The main objective of the current research project was to develop and perform a storage experiment in which the storage behaviour of fine and coarse wood chips could be examined and compared in detail over a period of nine months. In this experiment two covered storage piles (height 3.5 m), with over 500 m3 fine and coarse wood chips respectively, were examined under practice scale conditions in Germany. After nine months of storage the fine chips in the core of the storage pile had dried to a moisture content of 34% with dry matter losses of 22%. Coarse chips, on the other hand, achieved a moisture content of 29% and dry matter losses of 21% in the same period. The maximum moisture content of 40% required by heating plants in practice is achieved by fine chips after 6.5 months and by the coarse chips already after 3.5 months.  相似文献   

2.
A Reference Diagram (RD) was constructed for first rotations of the Euroamerican poplar ‘I-214’ grown as short rotation coppice (SRC). Data from 144 plots, established in eleven sites in Mediterranean environments, were used to develop the model. The density at establishment of the plantations ranged between 6666 and 33,333 stools ha−1, covering the usual densities ranges used in short rotation forestry (SRF). The RD was based on a density-independent mortality model that relates the density of living stools to the average height of dominant shoot and the initial plantation density, and it includes a system of two simultaneously fitted equations relating a) quadratic mean basal diameter of dominant shoots to the average height of dominant shoot and the final density, and b) total above-ground woody dry biomass to quadratic mean basal diameter and final density. The isolines in the RD represented mortality, quadratic mean basal diameter of dominant shoots and total above-ground woody dry biomass at the end of a first rotation of three years. The final yield in terms of biomass ranged from 1 to 85 Mg dm ha−1. The RD enables rapid and straightforward comparison of different situations, both at planting and at harvesting, and is a useful tool, based on a wide range of empirical data, for management and decision making regarding short rotation poplar crops.  相似文献   

3.
This study proposes stand level models for estimating biomass yield, total energy and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens plantations, on the basis of measurements made in 131 plots established at the usual range of initial forest densities for southwestern Europe. The timber volume, total aboveground biomass, logging residue biomass, crown biomass, carbon in aboveground biomass and soil organic layer, energy in aboveground biomass, energy in logging residue biomass and usable cellulose yield were represented in the form of isolines (taking mortality into account) and plotted against dominant height. These variables were calculated and compared with previously published data on two silvicultural options for short rotation forestry, one destined for bioenergy production and the other consisting of the standard silviculture regime applied to both species in southern Europe, considering the average site index for each species. Yield levels were higher in E. nitens than in E. globulus for all variables because of faster diameter increment at similar densities. The total yield in terms of biomass was 13.9-14.6 Mg ha−1 y−1 for E. globulus and 20.4-21.5 Mg ha−1 y−1 for E. nitens. Energy in aboveground biomass ranged between 233 and 245 GJ ha−1 y−1 for E. globulus and 345 and 364 GJ ha−1 y−1 for E. nitens, carbon accumulation rate in aboveground biomass and soil organic layer was 6.9-7.2 Mg ha−1 y−1 for E. globulus and 12.7-13.5 Mg ha−1 y−1 for E. nitens, and usable cellulose was 5.7-5.9 Mg ha−1 y−1 for E. globulus and 9.0-10.1 Mg ha−1 y−1 for E. nitens. It was found that 50% increments in the initial density result in only marginal increments in biomass and usable cellulose yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号