首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Online liquid chromatography-mass spectrometric (LC-MS) analysis of intact proteins (i.e., top-down proteomics) is a growing area of research in the mass spectrometry community. A major advantage of top-down MS characterization of proteins is that the information of the intact protein is retained over the vastly more common bottom-up approach that uses protease-generated peptides to search genomic databases for protein identification. Concurrent to the emergence of top-down MS characterization of proteins has been the development and implementation of the stable isotope labeling of amino acids in cell culture (SILAC) method for relative quantification of proteins by LC-MS. Herein we describe the qualitative and quantitative top-down characterization of proteins derived from SILAC-labeled Aspergillus flavus using nanoflow reversed-phase liquid chromatography directly coupled to a linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FTICR-MS). A. flavus is a toxic filamentous fungus that significantly impacts the agricultural economy and human health. SILAC labeling improved the confidence of protein identification, and we observed 1318 unique protein masses corresponding to 659 SILAC pairs, of which 22 were confidently identified. However, we have observed some limiting issues with regard to protein quantification using top-down MS/MS analyses of SILAC-labeled proteins. The role of SILAC labeling in the presence of competing endogenously produced amino acid residues and its impact on quantification of intact species are discussed in detail.  相似文献   

2.
Qin W  Song Z  Fan C  Zhang W  Cai Y  Zhang Y  Qian X 《Analytical chemistry》2012,84(7):3138-3144
In recent years, quantitative proteomic research attracts great attention because of the urgent needs in biological and clinical research, such as biomarker discovery and verification. Currently, mass spectrometry (MS) based bottom up strategy has become the method of choice for proteomic quantification. In this strategy, the amount of proteins is determined by quantifying the corresponding proteolytic peptides of the proteins, therefore highly efficient and complete protein digestion is crucial for achieving accurate quantification results. However, the digestion efficiency and completeness obtained using conventional free protease digestion is not satisfactory for highly complex proteomic samples. In this work, we developed a new type of immobilized trypsin using hairy noncross-linked polymer chains hybrid magnetic nanoparticle as the matrix aiming at ultra fast, highly efficient proteomic digestion and facile (18)O labeling for absolution protein quantification. The hybrid nanoparticle is synthesized by in situ growth of hairy polymer chains from the magnetic nanoparticle surface using surface initiated atom transfer radical polymerization technique. The flexible noncross-linked polymer chains not only provide large amount of binding sites but also work as scaffolds to support three-dimensional trypsin immobilization which leads to increased loading amount and improved accessibility of the immobilized trypsin. For complex proteomic samples, obviously increased digestion efficiency and completeness was demonstrated by 27.2% and 40.8% increase in the number of identified proteins and peptides as well as remarkably reduced undigested proteins residues compared with that obtained using conventional free trypsin digestion. The successful application in absolute protein quantification of enolase from Thermoanaerobacter tengcongensis protein extracts using (18)O labeling and MRM strategy further demonstrated the potential of this hybrid nanoparticle immobilized trypsin for high throughput proteome quantification.  相似文献   

3.
Stable-isotope dimethyl labeling for quantitative proteomics   总被引:1,自引:0,他引:1  
Hsu JL  Huang SY  Chow NH  Chen SH 《Analytical chemistry》2003,75(24):6843-6852
In this paper, we report a novel, stable-isotope labeling strategy for quantitative proteomics that uses a simple reagent, formaldehyde, to globally label the N-terminus and epsilon-amino group of Lys through reductive amination. This labeling strategy produces peaks differing by 28 mass units for each derivatized site relative to its nonderivatized counterpart and 4 mass units for each derivatized isotopic pair. This labeling reaction is fast (less than 5 min) and complete without any detectable byproducts based on the analysis of MALDI and LC/ESI-MS/MS spectra of both derivatized and nonderivatized peptide standards and tryptic peptides of hemoglobin molecules. The intensity of the a(1) and y(n-1) ions produced, which were not detectable from most of the nonderivatized fragments, was substantially enhanced upon labeling. We further tested the method based on the analysis of an isotopic pair of peptide standards and a pair of defined protein mixtures with known H/D ratios. Using LC/MS for quantification and LC/MS/MS for peptide sequencing, the results show a negligible isotopic effect, a good mass resolution between the isotopic pair, and a good correlation between the experimental and theoretical data (errors 0-4%). The relative standard deviation of H/D values calculated from peptides deduced from the same protein are less than 13%. The applicability of the method for quantitative protein profiling was also explored by analyzing changes in nuclear protein abundance in an immortalized E7 cell with and without arsenic treatment.  相似文献   

4.
5.
Nie AY  Zhang L  Yan GQ  Yao J  Zhang Y  Lu HJ  Yang PY  He FC 《Analytical chemistry》2011,83(15):6026-6033
Quantitative proteomics is one of the research hotspots in the proteomics field and presently maturing rapidly into an important branch. The two most typical quantitative methods, stable isotope labeling with amino acids in cell culture (SILAC) and isobaric tags for relative and absolute quantification (iTRAQ), have been widely and effectively applied in solving various biological and medical problems. Here, we describe a novel quantitative strategy, termed "IVTAL", for in vivo termini amino acid labeling, which combines some advantages of the two methods above. The core of this strategy is a set of heavy amino acid (13)C(6)-arginine and (13)C(6)-lysine and specific endoproteinase Lys-N and Arg-C that yield some labeled isobaric peptides by cell culture and enzymatic digestion, which are indistinguishable in the MS scan but exhibit multiple MS/MS reporter b, y ion pairs in a full mass range that support quantitation. Relative quantification of cell states can be achieved by calculating the intensity ratio of the corresponding reporter b, y ions in the MS/MS scan. The experimental analysis for various proportions of mixed HeLa cell samples indicated that the novel strategy showed an abundance of reliable quantitative information, a high sensitivity, and a good dynamic range of nearly 2 orders of magnitude. IVTAL, as a highly accurate and reliable quantitative proteomic approach, is expected to be compatible with any cell culture system and to be especially effective for the analysis of multiple post-translational modificational sites in one peptide.  相似文献   

6.
The accuracy in quantitative analysis of N-linked glycopeptides and glycosylation site mapping in cancer is critical to the fundamental question of whether the aberration is due to changes in the total concentration of glycoproteins or variations in the type of glycosylation of proteins. Toward this goal, we developed a lectin-directed tandem labeling (LTL) quantitative proteomics strategy in which we enriched sialylated glycopeptides by SNA, labeled them at the N-terminus by acetic anhydride ((1)H(6)/(2)D(6)) reagents, enzymatically deglycosylated the differentially labeled peptides in the presence of heavy water (H(2)(18)O), and performed LC/MS/MS analysis to identify glycopeptides. We successfully used fetuin as a model protein to test the feasibility of this LTL strategy not only to find true positive glycosylation sites but also to obtain accurate quantitative results on the glycosylation changes. Further, we implemented this method to investigate the sialylation changes in prostate cancer serum samples as compared to healthy controls. Herein, we report a total of 45 sialylated glycopeptides and an increase of sialylation in most of the glycoproteins identified in prostate cancer serum samples. Further quantitation of nonglycosylated peptides revealed that sialylation is increased in most of the glycoproteins, whereas the protein concentrations remain unchanged. Thus, LTL quantitative technique is potentially an useful method for obtaining simultaneous unambiguous identification and reliable quantification of N-linked glycopeptides.  相似文献   

7.
Comparing the relative abundance of each protein present in two or more complex samples can be accomplished using isotope-coded tags incorporated at the peptide level. Here we describe a chemical labeling strategy for the incorporation of a single isotope label per peptide, which is completely sequence-independent so that it potentially labels every peptide from a protein including those containing posttranslational modifications. It is based on a gentle chemical labeling strategy that specifically labels the N-terminus of all peptides in a digested sample with either a d5- or d0-propionyl group. Lysine side chains are blocked by guanidination prior to N-terminal labeling to prevent the incorporation of multiple labels. In this paper, we describe the optimization of this N-terminal isotopic tagging strategy and validate its use for peptide-based protein abundance measurements with a 10-protein standard mixture. Using a results-driven strategy, which targets proteins for identification based on MALDI TOF-MS analysis of isotopically labeled peptide pairs, we also show that this labeling strategy can detect a small number of differentially expressed proteins in a mixture as complex as a yeast cell lysate. Only peptides that show a difference in relative abundance are targeted for identification by tandem MS. Despite the fact that many peptides are quantitated, only those few showing a difference in abundance are targeted for protein identification. Proteins are identified by either targeted LC-ES MS/MS or MALDI TOF/TOF. Identifications can be accomplished equally well by either technique on the basis of multiple peptides. This increases the confidence level for both identification and quantitation. The merits of ES MS/MS or MALDI MS/MS for protein identification in a results-driven strategy are discussed.  相似文献   

8.
As the quantification of peptides and proteins extends from comparative analyses to the determination of actual amounts, methodologies for absolute protein quantification are desirable. Metal-coded affinity tags (MeCAT) are chemical labels for peptides and proteins with a lanthanide-bearing chelator as a core. This modification of analytes with non-naturally occurring heteroelements adds the analytical possibilities of inductively coupled plasma mass spectrometry (ICPMS) to quantitative proteomics. We here present the absolute quantification of recombinantly expressed aprotinin out of its host cell protein background using two independent MeCAT methodologies. A bottom-up strategy employs labeling of primary amino groups on peptide level. Synthetic peptides with a MeCAT label which are externally quantified by flow injection analysis (FIA)-ICPMS serve as internal standard in nanoHPLC-ESI-MS/MS. In the top-down approach, protein is labeled on cysteine residues and separated by two-dimensional gel electrophoresis. Flow injection analysis of dissolved gel spots by ICPMS yields the individual protein amount via its lanthanide label content. The enzymatic determination of the fusion protein via its β-galactosidase activity found 8.3 and 9.8 ng/μg (nanogram fusion protein per microgram sample) for batches 1 and 2, respectively. Using MeCAT values of 4.0 and 5.4 ng/μg are obtained for top-down analysis, while 14.5 and 15.9 ng/μg were found in the bottom-up analysis.  相似文献   

9.
We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.  相似文献   

10.
Current strategies for identification and quantification of 3-nitrotyrosine (3NT) post-translationally modified proteins (PTM) generally rely on biotin/avidin enrichment. Quantitative approaches have been demonstrated which employ isotopic labeling or isobaric tagging in order to quantify differences in the relative abundances of 3NT-modified proteins in two or potentially eight samples, respectively. Here, we present a novel strategy which uses combined precursor isotopic labeling and isobaric tagging (cPILOT) to increase the multiplexing capability of quantifying 3NT-modified proteins to 12 or 16 samples using commercially available tandem mass tags (TMT) or isobaric tags for relative and absolute quantification (iTRAQ), respectively. This strategy employs "light" and "heavy" labeled acetyl groups to block both N-termini and lysine residues of tryptic peptides. Next, 3NT is reduced to 3-aminotyrosine (3AT) using sodium dithionite followed by derivatization of light and heavy labeled 3AT-peptides with either TMT or iTRAQ multiplex reagents. We demonstrate the proof-of-principle utility of cPILOT with in vitro nitrated bovine serum albumin (BSA) and mouse splenic proteins using TMT(0), TMT(6), and iTRAQ(8) reagents and discuss limitations of the strategy.  相似文献   

11.
Fu Q  Li L 《Analytical chemistry》2005,77(23):7783-7795
A stable-isotope dimethyl labeling strategy was previously shown to be a useful tool for quantitative proteomics. More recently, N-terminal dimethyl labeling was also reported for peptide sequencing in combination with database searching. Here, we extend these previous studies by incorporating N-terminal isotopic dimethylation for de novo sequencing of neuropeptides directly from tissue extract without any genomic information. We demonstrated several new sequencing applications of this method in addition to the identification of the N-terminal residue using the enhanced a(1) ion. The isotopic labeling also provides easier and more confident de novo sequencing of peptides by comparing similar MS/MS fragmentation patterns of the isotopically labeled peptide pairs. The current study on neuropeptides shows several distinct fragmentation patterns after N-terminal dimethylation which have not been reported previously. The y((n-1)) ion is enhanced in multiply charged peptides and is weak or missing in singly charged peptides. The MS/MS spectra of singly charged peptides are simplified due to the enhanced N-terminal fragments and suppressed internal fragments. The neutral loss of dimethylamine is also observed. The mechanisms for the above fragmentations are proposed. Finally, the structures of the immonium ion and related ions of N(alpha), N(epsilon)-tetramethylated lysine and N(epsilon)-dimethylated lysine are explored.  相似文献   

12.
Zhao Y  Jia W  Wang J  Ying W  Zhang Y  Qian X 《Analytical chemistry》2011,83(22):8802-8809
Glycosylation modifications of proteins have been attracting increasing attention due to their roles in the physiological and pathological processes of the cell. Core fucosylation (CF), one special type of glycan structure in glycoproteins, has been linked with tumorigenesis. The study of protein glycosylation has been hindered by the technical challenges caused by the microheterogeneity of glycan modifications. In commonly used methods, sugar chains on the peptide were released using endoglycosidase, and the glycan and peptides were analyzed separately with mass spectrometry. Although mass spectrometric analysis can be performed easily in this way, an increase in false positives when assigning glycosites was inevitable. Our earlier research demonstrated a strategy combining Endo F3-catalyzed partial deglycosylation with MS(3) (MS/MS/MS) scanning triggered by the neutral loss of a fucose to precisely identify CF proteins on a large scale. In this research, fragmentations of partially deglycosylated glycopeptides were studied using a triple quadrupole mass spectrometer, and a quantification method that coupled our published identification strategy with multiple reaction monitoring-mass spectrometry (MRM-MS) analysis was developed to obtain site-specific quantification information of core fucosylated peptides. To illustrate the feasibility of the quantification method, the CF peptides of target proteins in clinical serum were quantified and compared as a preliminary demonstration.  相似文献   

13.
Guo K  Ji C  Li L 《Analytical chemistry》2007,79(22):8631-8638
One of the challenges associated with metabolome profiling in complex biological samples is to generate quantitative information on the metabolites of interest. In this work, a targeted metabolome analysis strategy is presented for the quantification of amine-containing metabolites. A dimethylation reaction is used to introduce a stable isotopic tag onto amine-containing metabolites followed by LC-ESI MS analysis. This labeling reaction employs a common reagent, formaldehyde, to label globally the amine groups through reductive amination. The performance of this strategy was investigated in the analysis of 20 amino acids and 15 amines by LC-ESI MS. It is shown that the labeling chemistry is simple, fast (<10-min reaction time), specific, and provides high yields under mild reaction conditions. The issue of isotopic effects of the labeled amines on reversed-phase (RP) and hydrophilic interaction (HILIC) LC separations was examined. It was found that deuterium labeling causes an isotope effect on the elution of labeled amines on RPLC but has no effect on HILIC LC. However, 13C-dimethylation does not show any isotope effect on either RPLC or HILIC LC, indicating that 13C-labeling is a preferred approach for relative quantification of amine-containing metabolites in different samples. The isotopically labeled 35 amine-containing analogues were found to be stable and proved to be effective in overcoming matrix effects in both relative and absolute quantification of these analytes present in a complicated sample, human urine. Finally, the characteristic mass difference provides additional structural information that reveals the existence of primary or secondary amine functional groups in amine-containing metabolites. As an example, for a human urine sample, a total of 438 pairs of different amine-containing metabolites were detected, at signal-to-noise ratios of greater than 10, by using the labeling strategy in conjunction with RP LC-ESI Fourier-transform ion cyclotron resonance MS.  相似文献   

14.
The extension of quantitation methods for small peptides to ions above 5 kDa, and eventually to global quantitative proteomics of intact proteins, will require extensive refinement of current analytical approaches. Here we evaluate postgrowth Cys-labeling and 14N/15N metabolic labeling strategies for determination of relative protein expression levels and their posttranslational modifications using top-down mass spectrometry (MS). We show that intact proteins that are differentially alkylated with acrylamide (+71 Da) versus iodoacetamide (+57 Da) have substantial chromatographic shifts during reversed-phase liquid chromatography separation (particularly in peak tails), indicating a requirement for stable isotopes in alkylation tags for top-down MS. In the 14N/15N metabolic labeling strategy, we achieve 98% 15N incorporation in yeast grown 10 generations under aerobic conditions and determine 50 expression ratios using Fourier transform ion cyclotron resonance MS in comparing these cells to anaerobically grown control (14N) cells. We devise quantitative methods for top-down analyses, including a correction factor for accurate protein ratio determination based upon the signal-to-noise ratio. Using a database of 200 yeast protein forms identified previously by top-down MS, we verify the intact mass tag concept for protein identification without tandem MS. Overall, we find that top-down MS promises work flows capable of large-scale proteome profiling using stable isotope labeling and the determination of >5 protein ratios per spectrum.  相似文献   

15.
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.  相似文献   

16.
Improving analytical precision is a major goal in quantitative differential proteomics as high precision ensures low numbers of outliers, a source of false positives with regard to quantification. In addition, higher precision increases statistical power, i.e., the probability to detect significant differences. With chemical labeling using isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tag (TMT) reagents, quantification is based on the extraction of reporter ions from tandem mass spectrometry (MS/MS) spectra. We compared the performance of two versions of the LTQ Orbitrap higher energy collisional dissociation (HCD) cell with and without an axial electric field with regard to reporter ion quantification. The HCD cell with the axial electric field was designed to push fragment ions into the C-trap and this version is mounted in current Orbitrap XL ETD and Orbitrap Velos instruments. Our goal was to evaluate whether the purported improvement in ion transmission had a measurable impact on the precision of MS/MS based quantification using peptide labeling with isobaric tags. We show that the axial electric field led to an increased percentage of HCD spectra in which the complete set of reporter ions was detected and, even more important, to a reduction in overall variance, i.e., improved analytical precision of the acquired data. Notably, adequate precision of HCD-based quantification was maintained even for low precursor ion intensities of a complex biological sample. These findings may help researchers in their design of quantitative proteomics studies using isobaric tags and establish HCD-based quantification on the LTQ Orbitrap as a highly precise approach in quantitative proteomics.  相似文献   

17.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

18.
Lin PC  Tseng MC  Su AK  Chen YJ  Lin CC 《Analytical chemistry》2007,79(9):3401-3408
Functionalized magnetic nanoparticles (MNPs) were synthesized to serve as laser desorption/ionization elements as well as solid-phase extraction probes for simultaneous enrichment and detection of small molecules in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Two laser-absorbing matrices were each conjugated onto MNP to give MNP@matrix which provided high ionization efficiency and background-free detection in MS leading to unambiguous identification of target small molecules in a complex mixture. MNP@matrix was demonstrated to serve as a general matrix-free additive in MALDI-TOF MS analysis of structurally distinct small molecules. Also, MNP@matrix provides a simple, rapid, and reliable quantitative assay for small molecules by mass without either the use of an internal standard or an isotopic labeling tag. Furthermore, the affinity extraction of small molecules from complex biofluid was achieved by probe protein-conjugated MNP@matrix without laborious purification. We demonstrated that a nanoprobe-based assay is a cost-effective, rapid, and accurate platform for robotic screening of small molecules.  相似文献   

19.
We describe the combined use of 15N-metabolic labeling and a cysteine-reactive biotin affinity tag to isolate and quantitate cysteine-containing polypeptides (Cys-polypeptides) from Deinococcus radiodurans as well as from mouse B16 melanoma cells. D. radiodurans were cultured in both natural isotopic abundance and 15N-enriched media. Equal numbers of cells from both cultures were combined and the soluble proteins extracted. This mixture of isotopically distinct proteins was derivatized using a commercially available cysteine-reactive reagent that contains a biotin group. Following trypsin digestion, the resulting modified peptides were isolated using immobilized avidin. The mixture was analyzed by capillary reversed-phase liquid chromatography (LC) online with ion trap mass spectrometry (MS) as well as Fourier transform ion cyclotron resonance (FTICR) MS. The resulting spectra contain numerous pairs of Cyspolypeptides whose mass difference corresponds to the number of nitrogen atoms present in each of the peptides. Designation of Cys-polypeptide pairs is also facilitated by the distinctive isotopic distribution of the 15N-labeled peptides versus their 14N-labeled counterparts. Studies with mouse B16 cells maintained in culture allowed the observation of hundreds of isotopically distinct pairs of peptides by LC-FTICR analysis. The ratios of the areas of the pairs of isotopically distinct peptides showed the expected 1:1 labeling of the 14N and 15N versions of each peptide. An additional benefit from the present strategy is that the 15N-labeled peptides do not display significant isotope-dependent chromatographic shifts from their 14N-labeled counterparts, therefore improving the precision for quantitating peptide abundances. The methodology presented offers an alternate, cost-effective strategy for conducting global, quantitative proteomic measurements.  相似文献   

20.
Comparative proteomics has emerged as a powerful approach to determine differences in protein abundance between biological samples. The introduction of stable-isotopes as internal standards especially paved the road for quantitative proteomics for comprehensive approaches to accurately determine protein dynamics. Metabolic labeling with (15)N isotopes is applied to an increasing number of organisms, including Drosophila, C. elegans, and rats. However, (15)N-enrichment is often suboptimal (<98%), which may hamper identification and quantitation of proteins. Here, we systematically investigated two independent (15)N-labeled data sets to explore the influence of heavy nitrogen enrichment on the number of identifications as well as on the error in protein quantitation. We show that specifically larger (15)N-labeled peptides are under-represented when compared to their (14)N counterparts and propose a correction method, which significantly increases the number of identifications. In addition, we developed a method that corrects for inaccurate peptide ratios introduced by incomplete (15)N enrichment. This results in improved accuracy and precision of protein quantitation. Altogether, this study provides insight into the process of protein identification and quantitation, and the methods described here can be used to improve both qualitative and quantitative data obtained by labeling with heavy nitrogen with enrichment less than 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号