首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research concerns with the preparation and characterization of isobutylene isoprene/butadiene–styrene rubber (IIR/SBR) blends with different blend ratios, in the presence and absence of styrene–isoprene–styrene (SIS) and styrene–isobutylene–styrene (SiBS) triblock copolymers to be tested as compatibilizers. Effect of the triblock copolymers on the blend homogeneity was investigated with the aid of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) measurements. Characterization of the rubber blends was conducted by measuring the physico-mechanical properties after and before thermal aging, in presence and absence of the triblock copolymers. In addition, weight swell % in toluene, motor oil and brake fluid of the rubber blend vulcanizates was assessed. The incorporation of SIS and SiBS triblock copolymers improved the homogeneity of IIR/SBR blends as well as increased both tensile strength and elongation at break of the rubber blend vulcanizates. Of the entire blend ratios examined, IIR/SBR (25/75) blend containing SIS compatibilizer possessed the best physico-mechanical properties (12.6 MPa tensile strength and 425 % elongation at break) and (14 MPa tensile strength and 555 % elongation at break) after and before thermal aging, respectively. Utilization of SIS and SiBS triblock copolymers enhanced the thermal stability of IIR/SBR blend vulcanizates. Moreover, IIR/SBR blends of different blend ratios showed superior swelling resistance in the brake fluid. IIR/SBR (25/75) blend containing SIS compatibilizer and cured with CBS/ZDEC/S vulcanizing system possessed the best physico-mechanical properties (14.4 MPa tensile strength and 440 % elongation at break) and (16.5 MPa tensile strength and 610 % elongation at break) after and before thermal aging, respectively.  相似文献   

2.
The mechanical properties and aging characteristics of blends of ethylene propylene diene monomer (EPDM) rubber and styrene butadiene rubber (SBR) were investigated with special reference to the effect of blend ratio and cross‐linking systems. Among the blends, the one with 80/20 EPDM/SBR has been found to exhibit the highest tensile, tear, and abrasion properties at ambient temperature. The observed changes in the mechanical properties of the blends have been correlated with the phase morphology, as attested by scanning electron micrographs (SEMs). The effects of three different cure systems, namely, sulfur (S), dicumyl peroxide (DCP), and a mixed system consisting of sulfur and peroxide (mixed) on the blend properties also were studied. The stress‐strain behavior, tensile strength, elongation at break, and tear strength of the blends were found to be better for the mixed system. The influence of fillers such as high‐abrasion furnace (HAF) black, general‐purpose furnace (GPF) black, silica, and clay on the mechanical properties of 90/10 EPDM/SBR blend was examined. The ozone and water aging studies also were conducted on the sulfur cured blends, to supplement the results from the mechanical properties investigation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2606–2621, 2004  相似文献   

3.
原位合成甲基丙烯酸锌增强氢化丁腈橡胶   总被引:3,自引:0,他引:3  
用ZnO和甲基丙烯酸(MAA)经原位反应合成了甲基丙烯酸锌(ZDMA),将其作为增强剂用以增强氢化丁腈橡胶(HNBR),研究了ZnO/MAA(摩尔比,下同)、过氧化二异丙苯(DCP)用量和ZDMA用量对硫化胶力学性能的影响。结果表明,当ZnO/MAA为0.8,DCP用量为4份(质量,下同)时,原位合成ZDMA能够显著地提高HNBR的力学性能。随着ZDMA理论生成量的增加,硫化胶的拉伸强度先增加后减少,当ZDMA理论生成量为30份时,硫化胶的最大拉伸强度为47.2MPa.而扯断伸长率保持在393%以上;100%定伸应力随ZDMA理论生成量的增加而增加。经傅里叶变换红外光谱法和广角X光衍射法分析表明,在HNBR混炼过程中,ZnO和MAA可以原位生成ZDMA。  相似文献   

4.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Carbon black (CB) and precipitated silica are two major reinforcing fillers in rubbers. CB/silica hybrid filler is also widely used in rubbers to provide balanced properties. CB/silica‐hybrid‐filler‐filled styrene‐butadiene rubber (SBR) containing naphthenic oil (NO), soybean oil (SO) and norbornylized SO (NSO) was investigated. The swelling and curing behavior and rheological, mechanical, thermal, aging and dynamic properties were studied and compared with earlier reported data on CB‐ or silica‐filled SBR. NSO provides better scorch safety and faster cure than SO. Compared with NO, the addition of SO and NSO enhances the thermal stability and aging resistance of SBR vulcanizates. SBR/NSO vulcanizates with hybrid filler exhibit a higher tensile and tear strength than SBR/NO and SBR/SO vulcanizates. A synergistic effect in the abrasion resistance of vulcanizates containing the hybrid filler is observed. An increase of sulfur content in the hybrid‐filler‐filled SBR/NSO vulcanizates provides further improvement in abrasion resistance, wet traction and rolling resistance. © 2017 Society of Chemical Industry  相似文献   

6.
用动态力学分析仪和差示扫描量热仪研究了丁苯橡胶(SBR)/反式-1,4-聚异戊二烯(TPI)共混硫化胶的动态力学性能和结晶性能。结果表明,SBR与TPI的两相相容性良好。随着TPI用量的增加,SBR/TPI共混硫化胶的玻璃化转变温度向低温方向移动,且损耗因子峰值逐渐降低。用炭黑填充CV体系硫化SBR/TPI共混胶的损耗因子峰值低于相应的未填充胶料;而当TPI晶体熔融后,炭黑填充胶料的损耗因子要大于未填充者。不同硫化体系硫化SBR/TPI共混胶的损耗因子峰值和玻璃化转变温度从大到小的变化依次为CV体系、EV体系和DCP体系。  相似文献   

7.
This work studied the effects of hydrogenated acrylonitrile‐butadiene rubber (HNBR) and precipitated silica (PSi) loadings in acrylonitrile‐butadiene rubber (NBR) filled with 60 parts per hundred of rubber (phr) of carbon black (CB) for oil‐resistant seal applications in contact with gasohol fuel. The cure characteristics, mechanical properties, and swelling behavior of HNBR/NBR blends reinforced with PSi before and after immersion in ethanol‐based oils (E10, E20, and E85) were then monitored. This work studied the effects of PSi loading in rubber compounds on the mechanical properties of the rubber blends. The results suggested that the scorch time of CB‐filled NBR/HNBR was not affected by HNBR loading, but the cure time, Mooney viscosity, and torque difference increased with HNBR content. The swelling of the blends in E85 oil were relatively low compared with those in E10 and E20 oils. The recommended NBR/HNBR blend ratio for oil‐resistant applications was 50/50. Tensile strength and elongation at break before and after immersion in gasohol oils increased with HNBR loading, and the opposite effect was found for tensile modulus and hardness. PSi filler had no effect on scorch time, but decreased the cure time of the blends. The swelling level of the blends slightly decreased with increasing PSi content. The recommended silica content for optimum reinforcement for black‐filled NBR/HNBR blend at 50/50 was 30 phr. The results in this work suggested that NBR/HNBR blends reinforced with 60 phr of CB and 30 phr of silica could be potentially used for rubber seals in contact with gasohol fuels. J. VINYL ADDIT. TECHNOL., 22:239–246, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Through the neutralization of magnesium oxide (MgO) and methacrylic acid (MAA), magnesium methacrylate [Mg(MAA)2] was in situ prepared in styrene–butadiene rubber (SBR) and used to reinforce the SBR vulcanizates cured by dicumyl peroxide (DCP). The experimental results show that the mechanical properties, dynamic mechanical properties, optical properties, and crosslink structure of the Mg(MAA)2‐reinforced SBR vulcanizates depend on the DCP content, Mg(MAA)2 content, and the mole ratio of MgO/MAA. The formulation containing DCP 0.6–0.9 phr, Mg(MAA)2 30–40 phr, and MgO/MAA mole ratio 0.50–0.75 is recommended for good mechanical properties of the SBR vulcanizates. The tensile strength of the SBR vulcanizates is up to 31.4 MPa when the DCP content is 0.6 phr and the Mg(MAA)2 content is 30 phr. The SBR vulcanizate have good aging resistance and limited retention of tensile strength at 100°C. The SBR vulcanizates are semitransparent, and have a good combination of high hardness, high tensile strength, and elongation at break. The Tg values of the SBR vulcanizates depend largely on the DCP content, but depend less on the Mg(MAA)2 content and the MgO/MAA mole ratio. The contents of DCP, Mg(MAA)2, and the MgO/MAA mole ratio have also great effects on the E′ values of the vulcanizates. The salt crosslink density is greatly affected by the Mg(MAA)2 content and MgO/MAA mole ratio, but less affected by the DCP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2667–2676, 2002  相似文献   

9.
ZDMA/白炭黑填充HNBR的结构与性能   总被引:1,自引:3,他引:1  
以甲基丙烯酸锌(ZDMA)/白炭黑填充氢化丁腈橡胶(HNBR),研究ZDMA/白炭黑并用比、硫化剂DCP用量及硫化时间对HNBR硫化胶结构和性能的影响。结果表明,在填料总量不变的前提下,随着白炭黑用量的增大,ZDMA/白炭黑填充HNBR硫化胶拉伸强度和压缩永久变形先减小后增大,填料分散性下降;随着硫化剂DCP用量的增大,ZDMA/白炭黑填充HNBR硫化胶物理性能和动态性能提高,填料分散性变好。当ZDMA/白炭黑并用比为10/30、硫化剂DCP用量为5~6份、一段硫化条件为160℃×45min、二段硫化条件为150℃×(9~12)h时,ZDMA/白炭黑填充HNBR硫化胶综合性能较好。  相似文献   

10.
Natural fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of large amounts of hydroxyl groups makes natural fibers less attractive for reinforcement of polymeric materials. Composites made from polystyrene (PS)/styrene butadiene rubber (SBR) blend and treated rice husk powder (RHP) were prepared. The RHP was treated by esterification and acetylation. A similar series of composites was also prepared using maleic anhydride–polypropylene (MA–PP) as a coupling agent. The processing behavior, mechanical properties, effect of thermooxidative ageing, and surface morphology of untreated and chemically modified RHP were studied. There was a decrease in tensile strength (except MA–PP composites), elongation at break, and Young's modulus in chemically treated RHP composites. The postreaction process during thermooxidative ageing enhanced the tensile strength and Young's modulus of the esterified and MA–PP composites. Acetylation treatment was effective in reducing the percentage of water absorption in RHP/PS–SBR composites. In general chemically treated RHP/PS–SBR composites and MA–PP showed a better matrix phase and filler distribution. However, the degree of filler–matrix interaction was mainly responsible for the improvement of mechanical properties in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3320–3332, 2004  相似文献   

11.
以低共熔溶剂(DES)为白炭黑的改性剂,通过与双[3-(三乙氧基硅)丙基]四硫化物(TESPT)并用进行原位反应改善白炭黑在丁苯橡胶中的分散性,研究了不同种类DES对白炭黑/丁苯橡胶复合材料硫化特性、加工性能、物理机械性能和微观形貌的影响。结果表明,氯化胆碱/尿素与TESPT并用可以明显改善白炭黑在丁苯橡胶中的分散性,使Payne效应减弱,并提升白炭黑/丁苯橡胶硫化胶的力学性能和压缩疲劳性能;氯化胆碱/乙二酸与TESPT并用对提高白炭黑与丁苯橡胶界面结合力效果显著,所得白炭黑/丁苯橡胶复合材料的耐磨性能优异;而当DES用量较大时改性效果不佳。  相似文献   

12.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

13.
The purpose of this article is that the silica‐modified SBR/BR blend replaces natural rubber (NR) in some application fields. The styrene‐butadiene rubber (SBR) and cis‐butadiene rubber (BR) blend was modified, in which silica filler was treated with the r‐Aminopropyltriethoxysilane (KH‐550) as a coupling agent, to improve mechanical and thermal properties, and compatibilities. The optimum formula and cure condition were determined by testing the properties of SBR/BR blend. The properties of NR and the silica‐modified SBR/BR blend were compared. The results show that the optimum formulawas 80/20 SBR/BR, 2.5 phr dicumyl peroxide (DCP), 45 phr silica and 2.5 mL KH‐550. The best cure condition was at 150°C for 25 min under 10 MPa. The mechanical and thermal properties of SBR/BR blend were obviously modified, in which the silica filler treated with KH‐550. The compatibility of SBR/BR blend with DCP was better than those with benzoyl peroxide (BPO) and DCP/BPO. The crosslinking bonds between modified silica and rubbers were proved by Fourier transform infrared analysis, and the compatibility of SBR and BR was proved by polarized light microscopy (PLM) analysis. The silica‐modified SBR/BR blend can substitute for NR in the specific application fields. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

14.
The mechanical properties, heat aging resistance, dynamic properties, and abrasion resistance of fibrillar silicate (FS)/styrene butadiene rubber (SBR) nanocomposites are discussed in detail. Compared with white carbon black (WCB)/SBR composites, FS/SBR composites exhibit higher tensile stress at definite strain, higher tear strength, and lower elongation at break but poor abrasion resistance and tensile strength. Surprisingly, FS/SBR compounds have better flow properties. This is because by rubber melt blending modified FS can be separated into numerous nanosized fibrils under mechanical shear. Moreover, the composites show visible anisotropy due to the orientation of nanofibrils. There is potential for FS to be used to some extent as a reinforcing agent for rubber instead of short microfibers or white carbon black. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2725–2731, 2006  相似文献   

15.
沈佩瑶  梁小容  李彩新  古菊 《化工学报》2018,69(6):2759-2766
针对目前硫酸法制备纳米纤维素高污染、高危险、高处理成本的缺点,采用环境友好、低能耗、低成本的碱法从蔗渣中制备纳米纤维素(2-BNC),补强丁苯橡胶(SBR),并与硫酸法制备的纳米纤维素(S-BNC)以及白炭黑(silica)补强SBR的性能进行对比,探究2-BNC的加入对复合材料性能的影响。结果表明,2-BNC在基体中的分散性优于silica,与SBR基体有良好的界面结合,在同等填料份数下,SBR/2-BNC硫化胶的储能模量高于SBR/silica硫化胶,损耗因子下降,耐磨耗性能更加突出,且力学性能更佳;2-BNC和S-BNC对SBR的整体补强效果相当。  相似文献   

16.
A novel block mercaptosilane (3‐benzothiazolthio‐1‐propyltriethoxylsilane) (Silane‐M) was synthesized and characterized by Fourier transform infrared spectra, 1H nuclear magnetic resonance, and elemental analysis. Styrene–butadiene rubber (SBR)/silica composites were prepared with Silane‐M, and its effect on the properties of materials was studied. Results show that Silane‐M can substantially improve the dispersion of silica and strengthen the reinforcement of silica for SBR vulcanizates like anchors of silica to rubber matrix. As expected, it enhances the tensile, tear strength, dynamic compression property, and resistance to abrasion of SBR/silica composites. By adding Silane‐M into the system, SBR/silica composites get superior skid resistance and high glass transition temperature (Tg). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of addition of two chemical blowing agents in cellular rubber blend of natural rubber (NR) and styrene‐butadiene rubber (SBR) at a fixed blend ratio of 1 : 1 on cure characteristics, and mechanical and morphological properties were invesigated. The chemical blowing agents used in this work were Oxybis (benzene sulfonyl) hydrazide (OBSH) and Azo dicarbonamide (ADC). Three different fillers, fly ash (FA) particles, precipitated silica, carbon black (CB) at their optimum concentrations of 40 phr were used, the FA and silica particles being chemically treated by bis‐(3‐triethoxysilylpropyl) tetrasulphide. The results suggested that the overall cure time decreased with OBSH and ADC contents. The OBSH was more effective in cure‐acceleration of the NR/SBR blend than the ADC. The NR/SBR vulcanized foams produced by OBSH and ADC agents had closed‐cell structures. The specific density and mechanical properties of the blend tended to decrease with increasing blowing agent content. The CB gave NR/SBR foams with smaller cell size, better cell dispersion, and higher mechanical properties than the precipitated silica and FA particles. The heat ageing and weathering resulted in an increase in tensile modulus and hardness, but lowered the tensile strength, ultimate elongation and tear strength. The elastic recovery for cellular NR/SBR vulcanizates with FA was superior to that with CB and silica, the elastic recovery of the blends decreasing with blowing agent content. Resilience property was improved by the presence of gas phases. The optimum concentration of OBSH and ADC to be used for NR/SBR vulcanizates was 4 phr. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The present work aims to develop antimicrobial rubber for safe industrial toys. For this purpose, natural rubber (NR) and synthetic rubber as styrene butadiene rubber (SBR) and ethylene propylene diene monomer (EPDM) were examined. Rubber and their ingredients as well as antimicrobial agents (doxycycline and cephalexin) were mixed in a rubber mixer. The rheological properties of compounded rubber were studied, and the curing time was determined. Mechanical properties and cytotoxicity were evaluated at optimally cured rubber compounds. Scanning electron micrographs of vulcanizates showed good dispersion of ingredients throughout the investigated matrices. Rheology study for the investigated vulcanizates in presence of tested antimicrobial species exhibited no significant change in their flow behaviors. It is significant to remember that the desired physical characteristics of rubber products, including their chemical and mechanical characteristics (elongation at break and tensile strength) enhanced when doxycycline and cephalexin are present, depending on their nature and concentration. Similar results were obtained for both the SBR and EPDM rubber vulcanizates. The cytotoxicity of the prepared vulcanizates towards human normal retina cell line (RPI-1) indicated good safety of these rubber products. Furthermore, developed rubber vulcanizates showed good antimicrobial efficacy towards the test bacteria and fungi strains.”  相似文献   

19.
The mechanical properties, flame retardancy, hot‐air ageing, and hot‐oil ageing resistance of ethylene‐vinyl acetate rubber (EVM)/hydrogenated nitrile‐butadiene rubber (HNBR)/magnesium hydroxide (MH) composites were studied. With increasing HNBR fraction, elongation at break and tear strength of the EVM/HNBR/MH composites increased, whereas the limited oxygen index and Shore A hardness decreased slightly. Hot‐air ageing resistance and hot‐oil ageing resistance of the composites became better with increasing HNBR fraction. Thermal gravimetric analysis results demonstrated that the presence of MH and low HNBR fraction could improve the thermal stability of the composites. Differential scanning calorimeter revealed that the glass transition temperature (Tg) of the composites shifted toward low temperatures with increasing HNBR fraction, which was also confirmed by dynamic mechanical thermal analysis. Atomic force microscope images showed MH has a small particle size and good dispersion in the composites with high HNBR fraction. The flame retardancy, extremely good hot‐oil ageing, and hot‐air ageing resistance combined with good mechanical properties performance in a wide temperature range (?30°C to 150°C) make the EVM/HNBR/MH composites ideal for cables application. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The covulcanization characteristics, mechanical properties, compatibility, and hot‐air aging resistance of hydrogenated nitrile‐butadiene rubber (HNBR)/ethylene‐propylene‐diene rubber (EPDM) blends cured with either sulfur or dicumyl peroxide (DCP) were studied. The difference between MH and ML (MH ? ML), rheometer graphs, selective swelling and a dynamic mechanical analysis of HNBR/EPDM blends confirmed that the peroxide curing system gives better covulcanization characteristics than the sulfur curing system and peroxide exhibited higher crosslink efficiency on EPDM while sulfur showed larger crosslink efficiency on HNBR. Dynamic mechanical analysis and morphology indicated that the compatibility between HNBR and EPDM is limited. Tensile strength and elongation at break of the sulfur‐cured blends are greater than those obtained with peroxide and increase with the HNBR fraction. The blends crosslinked with peroxide retain their tensile strength but not their elongation at break after hot air ageing better than blends vulcanized by sulfur. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号